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ABSTRACT

Reliably modeling noise attenuation through interaction with vibrating bound-
ary structures is fundamental to the formulation of effective active noise control sys-
tems. In this paper we investigate, through numerical approximation, uniform ex-
ponential stability of two systems which model the acoustic/structure interaction of
an air-filled, rectangular cavity. The first model assumes dissipative boundary condi-
tions along one side of the boundary, while the second assumes dissipative boundary
conditions along all four sides of the cavity. We obtain weak variational formulations
for these models, express each as finite dimensional systems, and use the Galerkin
technique to transform the distributed parameter systems into systems of ordinary
differential equations. We analyze the stability of the finite dimensional systems in
order to gain insight into the stability of the original infinite dimensional systems.
Essentially, our analysis consists of solving a generalized eigenvalue problem and ob-
serving where the eigenvalues lie within the complex plane. This stability analysis

leads us to conclude that one model is better suited for use in the formulation of the

noise control problem. Aocesion For
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I. INTRODUCTION

Imagine that you are ten years old and your teenage brother asks you to
participate in a scientific experiment. You agree. Inside a 55 gallon drum you go.
Your brother, clever lad that he is, manages to suspend the drum (and you) a few feet
in the air. So there you are, dangling by a rope three feet off the ground-sealed in a
metal drum. With your baseball bat in hand, he strikes the drum dead center. After
the drum stops reverberating, he lowers it to the ground. As he pops the lid off, he
asks you to describe how the acoustic noise field in the drum behaved after his forceful
swing. As a composed budding young scientist, you disregard the blood dripping from
your left earlobe and answer, “Initially, a large noise field was created by the strike of
the bat. However, after the impulse force was experienced, the intensity of the noise
field steadily decreased until it eventually was imperceptible.” Your brother thanks
you dearly and then propoées a heat conduction experiment...

In this paper, we too examine noise transmission attenuation through a vi-
brating boundary structure. Our approach, however, is to do so through numerical
approximation. More specifically, we examine the exponential stability of infinite di-
mensional second order systems of coupled partial differential equations by numerical
approximation. This is a topic attracting considerable interest in the fields of engi-
neering and applied mathematics because the applications are both numerous and
diverse—reducing noise levels in automobiles, aircraft, and space launch vehicles to
name a few. The degree to which a control system formulated to effect noise reduc-
tion in a fluid-filled cavity succeeds depends to great extent on how accurately the
underlying mathematical model agrees with the observed physical phenomena. As
our young scientist reported above, the acoustic field created by an external force
acting on the cavity boundary steadily diminished to zero as time passed (in the
absence of any sustaining force). This is equivalent to requiring that all solutions to

the system of equations selected to model the behavior of the acoustic field, as well




as the vibrating boundary, converge exponentially to zero by a uniform rate of decay.
Establishing this result for the infinite dimensional system is nontrivial and, at times,

a very difficult task.
To help clarify these ideas, consider the following abstract formulation. Ac-
cording to [Ref. 1], many examples related to acoustics or fluid/structure interactions

can be modeled abstractly as a first order system of equations as follows:
vi(t) = Ay(t), t>0, y(t)eH, (1.1)

where ‘H is an appropriately defined Hilbert space. The companion linear control

system is typically written
w(t) = Ay(t) + Bh(t), h(t) €R", (12)

where h is a control input and B is a linear operator from R"™ into H. This system
possesses uniform exponential stability if there exist M > 0 and 8 > 0 such that for

all £ > 0 and for all (y(0),v:(0)) € H

ly(®), ye ()l < Me™||(y(0), %:(0))]l [Ref.2, 3],

where ||y(t), y¢(t)||x denotes the energy of the system at time ¢ and ||(y(0), y:(0)||%
denotes the energy of the system at ¢ = 0.

The authors of [Ref. 1] state that “the most common approach for the ap-
proximation of a control problem involving 1.2 is to formulate a sequence of finite

dimensional control systems of the form
v (t) = AVyV(t) + BYR(), >0, y"(t)eH", (1.3)

where the dimension of the finite solution space " increases toward infinity as N
tends to infinity. In general, equation 1.3 is derived from 1.2 using space discretization
techniques such as finite difference, finite elements or spectral methods developed
for the approximation of the solutions of I.1. A control strategy is then designed

for the finite dimensional control problem involving 1.3. This control is used as an




approximation to the desired control function for the infinite dimensional control
problem 1.2. One of the most practical conditions tc') assure the well-posedness of
the finite dimensional control problem, as well as the convergence of the approximate
controls to the desired control for the infinite-dimensional system, is that the solutions
of 1.3 for h = 0 preserve the exponential decay of the solutions of 1.1.” Hence

determining the stability of the finite dimensional system
yN(t) = AVYN (), t>0, yN(@) e HV (1.4)

is of fundamental importance.

Typically this stability analysis is accomplished by examining where the eigen-
values of A" lie within the complex plane, since theory tells us that system 1.4 is
globally stable if and only if all eigenvalues of AV have negative real parts [Ref. 4].
The process is nontrivial because numerical results have indicated that many popular
approximation schemes fail to maintain a uniform decay rate as the dimension of the
approximating system 1.4 increases [Ref. 1], even in cases where the original system
was proven to be exponentially stable.

In this paper, we examine two different infinite dimensional models by numer-
ical approximation in order to gain insight into their adequacy for control system
formulations. Model I is believed to be stable, but not uniformly exponentially sta-
ble [Ref. 5]. Model II is believed to be exponentially stable [Ref. 6].

In the following chapters, topics introduced above are addressed in greater

* detail. In Chapter II, we develop a general and two specific models describing an

acoustic field inside a two-dimensional fluid-filled cavity surrounded by a perturbable
boundary. In Chapter III, we illustrate the Galerkin techniqué chosen for our numer-
ical approximations, and in Chapter IV, we apply this technique to the models under
consideration. In Chapter V, we describe how specific approximations were obtained
and present our results. We conclude with summary comments and propose future

areas of study in Chapter VL







II. MATHEMATICAL MODELS
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Figure 1. 2-D Acoustic Chamber for the General Mathematical Model

In this chapter, we develop a general and two specific models for a system con-
sisting of the wave equation coupled with the beam equation on part of the boundary.
Consider the two-dimensional rectangular air filled cavity surrounded by an impene-
trable boundary shown in Figure 1. A noise source exterior to the cavity produces a
perturbing force f which induces vibrations in the cavity boundary causing fluctua-
tions (i.e., undesirable noise) in the acoustic pressure field within the cavity. Equa-
tions of motion describing boundary vibrations and acoustic pressure fluctuations
within the cavity, together with appropriate initial value and boundary conditions
form a system of coupled, second order partial differential equations in time.

We begin formulation of the general model by assuming that the interior acous-
tic pressure field satisfies the standard wave equation ¢;; = c2A¢ where ¢ is the

velocity potential throughout the cavity and ¢ is the uniform speed of sound in the




fluid. The velocity potential ¢ is a complex-valued function satisfying
6(t7 x’ y) = —V¢(t7 x? y) ?

where ¢ denotes the fluid velocity. Initial value conditions ¢(0,z,y) and ¢:(0,z,y), as
well as boundary conditions along dQ2—either Dirichlet, Neumann or dissipative—are
specified.

A Newtonian analysis of forces and bending moments leads to equations de-
scribing the motion of the elastic walls bounding the cavity. For simplicity we assume
that the boundary walls are impenetrable and that only‘ one side of the rectangular
boundary is perturbable (The term beam refers to the perturbable bbundary.). We
assume an Fuler-Bernoulli beam where (i) w(t,z) denotes the transverse displace-
ment of the beam of length a, (ii) py and p; denote the uniform mass densities of the
beam and fluid, respectively, (iii) M(¢,z) denotes the total internal moment of the
beam, and (iv) f(¢,z) denotes the external forcing term. The beam equation takes

the general form
watt(t, x) + Ma:x(t7 .’[) - '—pqut(ta z, IU(t, CL')) + f(t7 :E) 9 (II]“)

where —psd(t, z, w(t, z)) is the acoustic pressure (This is the first coupling term we
see in the acoustic/structure system.).

Initial value conditions are specified, and boundary conditions for the beam
indicate whether the ends are free, partially restrained, or clamped. Additionally,
assumptions specifying the types of internal moments of the beam are necessary.

Internal moments typically consist of bending and damping moments,
M(t7 '7") = Mbendi'n.g + Mdamping 3

where

Miending = strain component = F(z)I(z)wg.(t,z).

The stiffness of the beam is given by E(z)I(z), where E(z) is the Young’s modulus

and [(z) is the cross-sectional area of the beam. Mygmping is taken to be either




Kelvin-Voigt, spatial hysteresis, or time hysteresis damping. While spatial hysteresis

damping is an appropriate choice for a beam constructed of composite materials and
time hysteresis damping is an appropriate choice for a beam constructed of “material
with memory”, Kelvin-Voigt damping assumes a memoryless beam of uniform (linear)

mass density where the damping stress is proportional to the strain rate. That is,
Kelvin-Voigt damping: Mygmping = strain rate component = ep(2)](z)way

where c¢pl(z) is the product of the Kelvin-Voigt damping coefficient ¢p(z) and beam
cross-sectional area I(z) [Ref. 7]. Here we consider a beam of uniform cross sec-
tional area and density. Thus we assume Kelvin-Voigt damping and take the coeffi-
cient functions ¢p(z)I(z) and E(z)I(z) to be constant for all z (i.e., cp(z)I(z) —
cpl and E(z)I(z) — EI).

Based upon the above discussion, the generalized mathematical model for the

acoustic/structure system is:

¢tt = 62A¢ fOI' (x,y) € Q, t>0,

(I1.2)
powu(t, ) + Mey(t,z) = —psds(t,z,w(t,z))+ f(t,2),0< z<a, t>0,

with appropriate initial value and boundary conditions specified for the wave and
beam equations.

Next we present two specific models and formally show that each model can
be expressed in both weak and strong formulations—which, as we shall see, are equiv-
alent given appropriate choices of inner product spaces. This preliminary work will
formally justify expressing Models I and II as first order systems in time thus facil-
itating our numerical examinations of solution stability. In Chapter III we examine
in some detail the popular variational scheme, the Galerkin method, used to obtain
approximate solutions to coupled systems such as those addressed in this paper. We
use the Galerkin scheme to transform the infinite dimensional system I1.2 into a finite

dimensional system to facilitate numerical analysis.




A. MATHEMATICAL MODEL I

y
l
Q(t)
r
/
I
\
0 a T
P
Force

Figure 2. 2-D Acoustic Chamber for Model I

The theoretical model considered in this section is shown in Figure 2. Here the
wave equation is coupled with the beam equation on one side of a 2-D rectangular,

air filled cavity. We assume Neumann boundary conditions along I'. That is,
Vé-n =0, (x,y)er,t>0,

where 7 represents the the outer normal with respect to I'. The boundary is, in
effect, a sound-insulated rigid wall which prevents any acoustic energy from escaping,
or alternatively, the boundary is a perfect reflector of acoustic waves.

Further, we assume that the perturbable boundary (i.e., beam) can be charac-
terized as an impenetrable fixed-end Euler-Bernoulli beam with Kelvin-Voigt damping
and that both ends of the beam are clamped. Given these assumptions, the equations

of motion describing the vibrations of the perturbable boundary are:

prwi(t, ) + Myp(t,z) = —psde(t,z,w(t, z)) + f(t,z), O0<z<a, t>0 (I1.3)




w(t,0) = wy(t,0) = w(t,a) = wy(t,a) =0, ¢>0, (11.4)

where

w(t,z) = the transverse displacement of the beam
é(t,z,y) = the fluid velocity potential
pp = the linear mass density of the beam
ps = the uniform mass density of the fluid
M(t,z) = Elwg + cplwyy

f(t,z) = the force due to an exterior noise field.

For the stability analysis of this model, we consider the open loop problem absent any
exterior noise field (i.e., f(¢,z) = 0 for ¢ > 0) and do not concern ourselves with any
noise control aspects. We assume (i) that the beam is impenetrable to the adjoining

fluid and obtain the second coupling equation (i.e., the continuity of velocity)
wi(z,t) = Vo(t,z,w(z,t)) -7 , 0<z<a, t>0, (I1.5)

and (ii) that displacements from the beam’s position of rest are small, which is in-
herent in the Euler-Bernoulli formulation. Because of (ii), we take the transverse
displacement of the beam as w(t,z) = @(t,z) + § where @ = 0. Under these

assumptions, equation II.3 and I1.5 become
powit(t,z) + Meo(t,z) = —psdu(t,z, @(t,z) + §) (IL6)

wi(t,z) = Vé(t,z,@(t,z) + 6) - n . (IL7)

By using two term Taylor Series expansions of ¢; and V¢ with respect to y about the

point z, equations I1.6 and II.7 become

watt(t, 111) + Mz:x(t7 .I) = —pf[¢t(t)x70) + ¢ty(t7 13,0)’11)], :




wi(t,z) = Vé(t,z,0) - 7 + (Vy(t,z,0w) - 7.

We drop the higher order terms —psesy(z,0,t)w and (Vé,(z,0,t)w) - 7 in these
two equations because of the assumption of small beam displacement and obtain first
order approximations for —ps¢; and V¢, respectively. Upon approximating the space

domain Q(¢) by © = [0, a] x [0,£], the open loop model described above is given by

¢ = AP, (z,y) € Q,t>0,
Vo -7 = 0, (z,y)€T,t>0,
éy(t,2,0) = —wy(t,z), 0<z<a,t>0,
powsr + OH(EIwgy + cplwyg) = —psée(t,z,0),0<z < a, t >0, (11.8)
w(t,0) = wy(t0) = w(t,a) = wy(t,a) =0, t>0,
¢(0,z,y) = ¢o(z,y) , w(0,2)=wo(),
$:0,2,9) = $i(z,y) , w0,2) = wi(2). )

Note: Throughout this paper, 0, denotes partial differentiation with respect to the
variable « (e.g., 02 = -gz-

System II.8 is a formal representation of the dynamics of a coupled acous-
tic/beam structure. Computational techniques (e.g., variational methods) used to
obtain approximate solutions to this system are based on rigorous convergence argu-
ments, typically done in the context of variational formulations of I1.8. To accomplish

this, the state is taken to be z(t) = (4, w) in the Hilbert space H = L’(€) x L*(To)
with energy product

¢ ¢
<uf7n >=L%&W+Amwh,
H

where ZZ(Q) is the quotient space of L? over the constant functions. Also, we define
the Hilbert space V = FI(Q) X H2(To) where ﬁl(ﬂ) is the quotient space of H?
over the constant functions and HZ(Io) = {¢ € H*(To) : #¥(z) = ¢(z) =0 at

10



z =0,a}. The energy product of V is taken as
< ) (¢ > :/pfv¢~V§dw+/ Elw,n,. dy .
w n , Q To

Next we define the weak variational (i.e., sesquilinear) forms:

51(¢7§):/Q,0f V¢ -Védw for ¢,§€FI(Q)
Ba(w,n) = | weeea dy for w,7 € HA(To)
)

n
p(6,6) = [ p; V- VEds for 4,6 € H'(9)
k1 (w, ) = /P el weenes dy for w,n € HE(To)
(¢, 1) = /FO ps$(t,2,0mdy for ¢ € H (Q) and n € H3(To)
To(w, €) = /F ps€lt,z, Owdy for we HY(To)and ¢ € 7' (Q)

pr(w,m) = | pywndy for w,n € L*(To)

p2(,6) = [ Lot dw for 6,6 € T'()

w1 (w, ) = /F Elugane.dy for w,n € H(To) (1L.9)
(
(

J

and express system I1.8 in weak form as,

p1(we,n) + £1(we,m) + pr(w,m) = —71(ds,m) and (I1.10)
P2(¢tt,§)+uz(¢:f) = 72(wta§)- (H-H)

Our next task is to write equations I1.10 and II.11 as a single second order
differential equation. Let ® = (¢, w) and ¥ = (¢, 7), such that ®, ¥ € V, and define

sesquilinear forms:
(0, 0) = pptp = /prV¢-V§dw + /F Elwsanpe dvy |
0'2(@,\11) = K+7T1—Tp = /I“ {CDIwa;xT]z:c + Pf(é(t7x70)77—§(t7$70)w}d7a

where 01,02 € V X V — C (space of complex numbers). The formulations o; and

o3 satisfy coercivity and continuity (i.e., boundedness) conditions

Ro1(®,0) 2 alo,

11



lon(@, V) < coli@flv][¥liv,
‘5}%02(‘1),@) 2 03<wz:t:7wxz>L2(l"o) =03”w”12vg(1‘o)7

loa(@, ) < el @lv[[¥llv,

where R denotes the “real part of”. The second order open loop problem is given by
(24(1), W)y= v + 02(2:(t), ) + 01(2(2), ¥) =0, (I1.12)

where V* is the dual of space V and (-, -)v«y denotes the usual duality pairing.

Since o; and o, satisfy the continuity and coercivity conditions shown above,
the Lax-Milgram Theorem guarantees the existence of uniquely determined bounded
linear operators Aj, A; such that the weak and strong formulations of the coupled

system are equivalent [Ref. 8]. That is
<A1q), \I’>Vt,v = 0'1(‘19, \If) and <A2(I>, qf)v*,V = 0'2((1), ‘I’) :

Thus system I1.12 gives rise to the equivalent system defined in terms of functionals
A, and A,

zu(t) + Azzi(t) + Ar2(t) = 0. (IL.13)

To facilitate our numerical work, we must express system I1.8 as a first order

system. Our goal is to write Model I as

&, [0 0 I 0 p
Wy 0 0 0 1 w
- . (IL.14)
¢tt C2A 0 0 0 qSt
i Wy i | O '—%82 —H —9558;1 1L W i

The symbol II appearing in matrix A above represents %fgbt(t,a:,O) whenever the
product Au is calculated.
We now develop the necessary notation and sesquilinear forms in order to write

system I1.8 as a first order system. The following approach replicates that found in

[Ref. 9].

12



We begin by defining the product spaces V=V x V and H = V x H whose

norms are given by
1@, W3 = (91 + 1913 and (@, )|Z, = 8] + [ ¥][%, respectively.

For x = (®,¥) and © = (T, A), the sesquilinear form ¢ : V xV —s C is then defined
by

a(0,x) = o((T,A),(2,9)) = —(A, @)y + 01(T, V) + 0a(A, ¥).
Since the duality product (:,-)v+ v is the unique extension by continuity of the scalar
product (-,-)g from H X V to V* x V, it follows that for appropriate restrictions on

© we can write

a(0,x) = o((T,A),(2,9)) = —(A, @)y + (AT, V)yey + (AA, )y, v
= —(A, )y + (AT + A A, W)y
= ((=A, AT + AsA), (9, 0))y
= (—A40,x)x.

The operator A : H — H is given by

0 1
—-A; —A

A= , (IL.15)

where the domain of A = {0 = (T,A) e H: A € V, 41T + A;A € H}, A, and A,
are the operators defined by o7 and o5, respectively, and the above calculations hold
for ©® € domain A.

By letting Z(t) = (2(t), 2(t)) and taking x € V, the first order system is

written in weak form as
(Ze(t), x)ve v = —a(Z(t),x),
which is formally equivalent to the strong formulation

Zi(t) = AZ(t) (I1.16)

13



in H, where A is given in II.15. Equation II.16 concisely represents the matrix

representation of Model I given by equation I1.14 where

0 0 I 0
0 0 0 I

A= , and
A 0 0 0
EI o4 cpl
R
—2A 0 0 0
Alz ,A2= .
0 Ey I <!y
Py T Py T

The linear operator A is dissipative in the sense (Ax, x)x < 0 for x € domain A. To

14



see this let x = (¢, w, ¢;, w;), then

b ¢
wy w
(Ax, X)n = ’
AP bt
El 54 cpl g4
L ———p;azw - H¢t - _‘%—8.’51‘075 J L We j H=VxH

= (P1V 1, V) 12() + (EIWost, Was) 12(rg) + (05 AD, de)12(0)

—  (Elwzg, Wozt) 12(ry) —(ps S1(t,2,0), wir2(ry) — SCDIw:rxtawzxt>L2(1‘o)

by integration by parts by integrati;n by parts
={psVe, Vo)rao) +  (pAb P12y — (ps du(t,2,0), we) 2y

apply Green’s formula
— (epTWert; Wrzt) 12(ry)
= (psV¢:, Vo) 12(0) + (s 0nd, d1)12(ry) — (P5 Vb, Vi) 12(q)
—(ps ¢:(t,2,0), we) 12(ry) — (DI Wagt, Wozt) r2(ry)

= (psOnd, ¢t>L2(F0)J = (ps $1(t,2,0), wi) r2(ry) — {cDIWegt, Weot) 12(Ty)

apply 8n¢=-w; on Ty

{pswe, 1) 12(ng) — (P ¢t 2,0), we) r2(rg) — (DT Wast, Wazt) 12(T)

= —~(epIwgst, Wt) 12 (To) *

Because —cpl llwxxtlliz(ro) < 0, we see that A is in fact dissipative.
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B. MATHEMATICAL MODEL II

l

Q(r)

=T ULU

s

—

B x

Figure 3. 2-D Acoustic Chamber for Model II

Our second model is similar to the first in that we consider the open loop case
in which the wave equation is coupled with the beam equation on one side of a 2-D
rectangular, air filled cavity as shown in Figure 3. Let Q = [0,a] x [0,1], 00 =T UT
with ' = I'; UT, U T's. Let the velocity potential in  be given by ¢ = ¢(t, z,y) and
the transverse beam displacement be denoted w = w(t,z) as in Model 1. Once again
we take our perturbable boundary to be a fixed-end (i.e., clamped) Euler Bernoulli
beam with Kelvin-Voigt damping. However, instead of assuming hard wall boundary
conditions along I' as we did in the first model, we now consider dissipative boundary

conditions along I'. Specifically, the boundary conditions are taken to be
Ondp +ad; = 0 for (z,y) € T and 0,¢ = wy(t,z) for (2,0) € Iy, t >0, (I1.18)

where a is a constant of proportionality. As in Model I, we take f(¢,z) = 0 for ¢ > 0.

All other assumptions remain as stated in Model I. Hence the coupled system for
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Model 11 is given by

$e = c*AP, (z,y) € Q,t>0,
Ond = —agy, (z,y)el,t>0,
9.6 = wi(t,x), (2,0)€To,t>0,
pywse + O2(EIwggy + cplwgs) = —psou(t,z,0),0< 2 < a, t > 0, (I1.19)
w(t,0) = wy(t,0) = w(t,a) = wy(t,a) = 0, t>0,
$(0,z,9) = ¢o(z,y) , w(0,2)=wo(z),
¢:(0,2,9) = ¢1(z,y) , w(0,z)=wi(z). )

The Hilbert spaces H = L(Q) x L*To) and V = H () x H}(T,) remain
as defined in the previous section.

In terms of the sesquilinear forms given by I1.9 and

M($,6) = [Lapsétdy for 6,6 THQ),

the weak variational form of I1.19 is given by

pi(wi, n) + K1(wy, ) + pa(w,n) = —71(ds,n) and (11.20)
p2(¢tt7 é.) + A1(¢t7 5) + /1‘2(¢7 6) = Tz('UJt, f) . (1121)

Here we pause to explain how the boundary condition 8,¢ + a¢; = 0 gives rise to the
sesquilinear form A;(¢, ). Consider the wave equation ¢ = c2A¢. By multiplying

through by an appropriately chosen trial function ¢ and integrating over {) we obtain

| G eutdo= [ prasean.

Looking just at the right hand side of this equation, we use Green’s formula to obtain

/prac/)gdwzfm pf(ancb)fdw—/ﬂprgb-Vfdw where 80 =T U T .

The boundary term represents

Lo ps@d)do = [ ppwéay + [ pr(~a) gt dy = ra(wn§) — M4,
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The only difference between the weak formulations for Models I and II (equa-
tions 11.10, IL.11 and II1.20, I1.21 respectively) is the appearance of A;(¢,£) in equa-
tion II1.21 which, as we have seen, arises because of the damping along I'. Just as the
sesquilinear forms were shown to satisfy certain coercivity and continuity conditions
in the previous section, so too does A;(¢,€). Once again, the Lax-Milgram Theorem
assures us that these weak formulations give rise to uniquely determined bounded
linear operators. Hence Model II can be expressed as a single first order equation
analogous to equation II.16 in the previous section.

Letting ® = (¢, w) and ¥ = (£, ), such that &, ¥ € V, and define sesquilinear

forms:
(@,9) = [ Vo Vedo + [ Elun.dy
0-2(@7‘1}) = —/I“ {CDIwzznxac —+ Pf(¢(ta$,0)77—f(t,$70)w)} d’)/ + /rapf ¢£d7,

where 01,02 € V X V — C (space of complex numbers).

Once again, the formulations o; and o3 satisfy coercivity and continuity con-

ditions
Ro1(2,2) > al@lly,
lo1(®,9)] < ef@lvi¥ilv,
Ro2(P,®) = ca(War, Waz)12(ry) + 03||¢”1252(r) = 03”71’“?13(1“0) + CS!|¢||%2(P) )
lo2(@,9)|| < eall@lIvII¥]lv

Denoting our state variables by z(t) = (¢, w) and making use of o; and o, as

defined above, we can express the second order open loop problem concisely as
<Ztt(t), \I1>V*,V -+ Uz(zt(t), \Il) + O'I(Z(t), \Il) =0 3 (1122)

where V* is the dual of space V.
Associated with o and o, are functionals A;, A, such that the weak and strong

formulations of the coupled system are equivalent. That is

<A1@, \I’>V',V = 0'1(@, \I') and <A2@, \I/>V*YV = 0'2(@, lII) .
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We conclude that the system described by equation I1.22 gives rise to an equivalent

system defined in terms of operators A; and A,. That is
Ztt(t) -+ Agzt(t) + Alz(t) =0. (1123)

The first order system is obtained just as it is for Model I. We let Z(¢) =
(2(t), z(t)) and take x € V to obtain

<Zt(t)a X>V’,V = —U(Z(t)a X) :
Formally, this system is equivalent to the strong formulation
Zy(t) = AZ(t) (I1.24)

in H. In matrix form, the strong formulation Model II is

&, o o 1 o |[4]
w 0 0 0 I
“l = Y, (IL.25)
¢tt A 0 0 0 ¢'t
Wit 0 ——%33 11 —‘Sll)bLIag Wi
i i L g 4L
Uy A u
where the block matrices A;, A; of A are
—c*A 0 0 0
A= and A; = .
0 ElH4 o <elpe
Py % <

Since energy is lost along all four sides of the cavity in Model I, it is actually
more dissipative than Model I, where energy is lost only along one side. Following

the procedure shown in II.17 one finds that

. (Ax, x)u = —cp! || Weatl|2(ro)—a(ps bty be)r2(ry = —CDIHwt”%Jg(ro)—an“@”%z(r) <0,

where a is the proportionality constant which appears in boundary condition II.18.
Now that we have variational formulations for Models I and II, we turn our
attention to a numerical scheme often used to obtain approximate solutions to systems

of differential equations.
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I1I. GALERKIN APPROXIMATION
METHOD

In order to examine the exponential stability of approximate solutions to Mod-
els I and II, we employ the Galerkin method to transform the systems of partial dif-
ferential equations into systems of ordinary differential equations. A review of this
popular computational technique follows.

The Galerkin method is one of the variational methods (e.g., Rayleigh-Ritz,
Least Squares, Galerkin, Collocation, etc.) which all seek good approximate solutions
to many types of boundary-value and initial-boundary value problems of the form
Au = f from a finite dimensional subspace.

Specifically, when given the differential equation Au = f, where A maps the
normed linear space X with norm || - ||x into the normed linear space Y with norm
| - lly and a finite dimensional subspace Xy = span{¢,, ¢s, ..., én} of X, variational

methods seek functions
uN = c1P1 + 22 + ... + cNON
belonging to Xx which minimize
[Aun = flly + [lux — ullx.

The Galerkin method is a widely used technique, subsuming both the finite el-
ement method and the method of least squares. It is worth noting that the Galerkin
and Rayleigh-Ritz methods coincide whenever the differential operator A is linear,
positive definite and self-adjoint. However, there are many important differential op-
erators which are either nonlinear, not self-adjoint or non-symmetric for which the
Galerkin method is applicable while the Rayleigh-Ritz method fails. For example,
the Galerkin scheme is applicable to many parabolic and hyperbolic differential equa-
tions whereas the Rayleigh-Ritz method may not be since the associated variational

problem may not have a solution [Ref. 10].
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The Galerkin method yields a finite system of equations, from a differential
equation, by discretizing the solution space rather than by discretizing the domain
and operators, as is done in other popular methods. Approximate solutions are found
using a variant of the method of weighted residuals (MWR), where the weighting func-
tions are chosen to yield solutions which are a finite combination of known functions.
The task at hand is to determine approximate solutions to the linear (or nonlinear)

differential operator equation

Au=f

from a finite dimensional subspace Xy of some inner product space X in which
the operator A is defined. Let (-,-) denote an inner product on X, let Xy =
span{¢l, #Y,...,oN}, and let Yy = span{v,¥Y ..., N} where Xy, Yy are N-dimen—
sional subspaces of X. The MWR seeks an approximate solution uy to Au = f such

that uy € Xn satisfies the system of equations
(Auy — f,%)) =0, for j =1,2,..,N. (I11.1)

Equation I11.1 is the inner product of the residual (Auy — f) and the weighting
function ?,bj-v integrated over the appropriate region. Now take uy to be a linear

combination of the basis functions ¢ such that
un = ady + el + ...+ endy -

Upon substituting this expression for uy into equation HI.1, we find that uy must
satisfy the linear system

N
Z(AQS;N7¢§V)CZ = (f7¢_§v)a fOI’j = 1727"-7N'
=1

In the Galerkin scheme, the weighting functions @bJN are taken to be the basis

functions of the approximate solution. That is

Y = ¢Y forj=1,2,..,N.
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The approximate solution is obtained by solving the resulting system for the coefficient
functions ¢;(t).
An example will clarify the general procedure. Consider the following initial-

boundary value problem

Uy — kugz, = 0, over'=[0,1], ¢t >0, (I11.2)
u(t,0) = 0, wugy(¢,1) =0, (I11.3)
u(0,z) = =z, (I11.4)

describing the heat conduction through a thin one-dimensional rod with no sources
of thermal energy. The temperature is held constant at one end of the rod (i.e., at
z = 0); the other end is insulated. Here we take the thermal diffusivity of the rod, k,
to equal one.

In operator notation, equation II.2 can be written as
U = Lu

where the operator L = k0? and, for simplicity, we take k = 1.

Our first task is to select appropriate basis functions which (1) possess the
smoothness requirements of the second order problem (i.e., ¢ € C*T)), (ii) are
linearly independent on T', and (iii) satisfy the boundary conditions I11.3. Here we

choose

For this example we take N = 2 obtaining

22 3
# =2z ad ¢ =% -2,
and because we will need the first and second derivatives of these basis functions

later, we calculate them now:

Y =z -1, 3N =1,
oY =2t —1, 024N = 2z.
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Our approximate solution takes the form

N=2

ult,z) ~un(tz) = 3 a(t)el(z) = a(t)é) (2) + e(t)é; (2),

=1
where we seek functions ¢;(¢). For N = 2, we need to select two weighting functions

w1, w; and introduce the spacial average (i.e., inner product or weighted integral)

(w,0) = [ wody,
T

such that
(wiyu) = (wi, Luy) fore=1,2. (IIL.5)

Note: The spacial superscript N is omitted below where the meaning is clear
and an overdot denotes differentiation in time.
For the Galerkin scheme, the basis functions ¢; serve as the weighting func-

tions. Hence I11.5 becomes
(@i, un) = (s, Lun) fori=1,2
yielding the system -
(1,611) + (b1,6202) — (B1,105¢1) — (b1,20562) = 0,

(¢2,¢101) + (b2, C202) — (2, €10261) — (¢2,2022) = 0,

or equivalently,
[(qal,qsl) (¢1,¢2)Hc‘1}_[(¢1,63¢1) oot | [ ] _[0] e
(¢2,41) (¢2,42) | | & (¢2,0%¢1) (¢2,0%¢2) | | 2 0

Given the particular boundary conditions for this problem, and because the basis

functions ¢; we selected satisfy these boundary conditions, we find that the inner
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product (¢;,02¢;) is equivalent to the inner product —(8,¢:,0:¢;) (i.e., L is a

self-adjoint operator). To see this, we integrate by parts:
1 1
(6,626)) = [ 6:026,da = .00, — [ 0.5 0.5 do,
where the boundary term vanishes. Thus,

(¢i733¢j) = _(aw¢‘i78$¢j)'

Although the basis functions ¢; were initially chosen so that they belonged to
C?*(T), this result indicates that less regular functions may suffice for this problem
(i.e, ¢; € C1(T)). This fact, which is of little use in this simple example, is emphasized
because of its theoretical import as well as its utility in reducing the computational
complexity of more challenging problems.

We now calculate the inner products contained in equation III.6 to obtain

'l .
366 315 | | © 2 13 C2 0
| SRR L ——
M z A g 5

Thus the Galerkin method has reduced our problem of finding approximate solutions
to a second order partial differential equation (PDE) to that of finding approximate
solutions to a system of first order ordinary differential equations (ODEs). A much

simpler task indeed! Multiplying equation ITI.7 by M~ yields

b, | B9 5ot | e | fo
& ~12.9231  7.1077 e 0’

or equivalently,

é +18.9231¢; — 5.9077¢;, = 0, (I11.8)
ér —12.9231¢; + 7.1077¢; = 0. (I11.9)

25




To determine ¢; and ¢y, we first solve for ¢, in equation II1.9 and then differentiate

to obtain ¢; yielding

1,
¢ = 5.9077(01 + 18.9231¢) . (I11.11)

Next substitute these equations for ¢; and é; into equation II1.9 and simplify to obtain
¢y + 26.0308¢; + 58.1539¢; = 0.

This is a second order ODE with constant coefficients which is easily solved. We find

that the general solutions for ¢, ¢; are

G = ae-—2.4681t + ﬁ6—23'5628t,

—2.4681 0™ 24681 _ 93 5698~ 23-5628¢

2

where a, § are constants. Substituting these equations for ¢;, ¢; into equation I11.10

we obtain

¢ = 2.7853ae 24681 _ () 78543235628 (I11.12)

In order to determine o and 3, we make use of the given initial condition given by
equation I11.4. For (¢t = 0,z = .5) and (¢ = 0,z = 1) , we know that u(0,.5) = .5

and u(0,1) = 1, respectively. Hence we have

u(0,.5) ~ un(0,.5) = ¢1(0)¢1(.5) + c2(0)p(.5) = .5
—1.6515a — 0.01518 = .5

and

u(0,1) ~ un(0,1) = c1(0)¢1(1) + c2(0)42(1) = 1
—2.35690 + 0.02368 = 1.

From these two equations, we determine that

a = —0.3608 and [ = 6.3442.
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Therefore, our approximate solution to equation II1.2 is
N=2
un(t,z) = > ct)gi(z),

i=1

where

¢ = —0.3608e24681% 1 6,344 23-5628¢
Cz = —1-00496_24681t . 4.98276—23.5628t
2
xz
¢1 = ? — X
3
x
¢2 = —3“ —Z.

In summary, the Galerkin method simplified the task of finding an approximate
solution of a PDE by recasting the problem as a system of ODEs in a finite dimensional
space. Because this example was simply meant to illustrate the Galerkin technique,
the solution obtained provides only a very crude approximate solution to the example
problem. Techniques for refinement of the approximate solution typically include
such things as increasing the number of basis functions and/or selection of different
basis functions. The interested reader is referred to [Ref. 11, 12, 13] for additional
information regarding solution refinement techniques. In Chapter IV, we transform

Models I and II into systems of finite dimension using the Galerkin method.
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IV. FINITE DIMENSIONAL
APPROXIMATIONS

In Chapter II, both strong and weak variational forms were obtained for Mod-
els I and II. Formally, at least, we demonstrated that these two formulations were
equivalent. In Chapter III, we saw how approximate solutions to an infinite dimen-
sional PDE could be obtained by employing the Galerkin technique to formulate
the problem in finite dimensional spaces. Key steps in implementing this particu-
lar discretization technique included selection of an appropriately defined set of basis
functions, use of these basis functions as the weighting (or trial) functions, calculation
of the inner product(s) defined for the discretization space, and finally, integration
over the spacial domain to transform the system of PDEs into a system of time de-
pendent ODEs. In this Chapter we extend these ideas to coupled systems of PDEs,
to wit, Models I and II.

Our approach will be: (i) choose finite sets of basis functions which span the
approximating solution spaces, (ii) express the infinite dimensional state variables
(w(t,z),(t,z,y)) in terms of these basis functions, and (iii) use of the weak varia-
tional forms developed in Chapter II to obtain finite dimensional representations of
Models I and II necessary for our numerical work.

First, let {B? }:11\ denote the 1-D basis functions which discretize the beam
and let {BJ'}7L, denote the 2-D basis functions which discretize the cavity. For
the moment simply note that there are n — 1 basis functions in {B*}2 and m =
(mg+1)(my+1)—1 basis functions in { B }7-, where (m;+1) and (m,+1) represent
the number of basis functions discretizing the cavity along the z,y axes, respectively.
In Chapter V, when we look at specific finite dimensional approximations of Models I
and 1I, the reader will better appreciate why these spaces have the dimensions given.

The basis sets {BF}2] and {BI}7 span spaces H} and H™ where the

n—-1

subscripts b and ¢ denote ‘beam’ and ‘cavity’. That is Hf = span{Br}*7! and
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H™ = span{B["}7-,. Denoting the combined dimension of the discretized beam and
cavity spaces as N = m + (n — 1), the approximating beam and cavity solutions are

given by
Zw B}(z) and ¢V(t,z,y) = >4 (t)B(2,y).

Notice that in this form the state variables are separated into products of time and
spatial functions.

For application of the Galerkin scheme, elements of the basis sets { Bf*}7+, and
{Br}%] serve as weighting functions for the cavity and beam, respectively. Denoting
the product space for the first order system as HY = HY x HY, restriction of the
infinite dimensional first order systems obtained for Models I and II in Chapter II to

the space HY x HV yields
(ZtN(t)7X>'H = _U(ZN(t)7 X) B

for ZN(t) = (6" (t, z,y), wN(t,z), 6N (¢, z,y),w]N (t,2,y))T. Note that o is model spe-
cific (Recall that we used o to denote the first order sesquilinear vectors for both
Models I and II in Chapter IL.). For x = (Bj*, B}), this finite dimensional first order

equation represents the linear system
MV (8 = ANy (), (IV.1)
where
= (9N (2),97())T and 9" = (67'(1), 83 (1), -+, I (E) i (), w3’ (2), -+, wily ()"

denotes the N x 1 = (m + n — 1) approximate state vector. We use an overdot to
denote differentiation with respect to time.

Note: Below, and for the remainder of this paper, the index ranges are k,£ =
1,---,mand 7,7 =1,---,n — 1 unless otherwise noted.

Up to this point, everything we have discussed in this chapter applies both

to Models I and II. Now we restrict our discussion to Model I for which equation
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IV.1 represents the linear system shown below. The non-zero entries in M~ and AN

represent block matrices. The rows of these block matrices are generated by holding
¢ and j fixed while varying k and 7 as appropriate for the particular product being

computed. System IV.1 is given by

[ 1T . T

BT BR, BYY) 0 0 0 ér(t)
0 Ba(Yiy BE, BY) 0 0 w; (t) _
0 0 p2(Y ey B, BY") 0 (1)
i 0 0 0 (05 BE,BY) | | i(t) |
- — "
MY 7™ (t)
0 0 A (S, BR, BY) 0 i (?)
0 0 0 (i, BE,Bp w;(t)
"—#Z(Z;cnzl B}rcn,an) 0 0 TZ(E?:._ll B:laan) q;k(t)
0 ~m (305 BY,BY) —n(Tiy B, BY) —ka (05 BRLBY) | | ie)
AN W (t)

where /31('7 ')7 /32('7 ')7 Pl('; ')7 :02('7 ')v /1'1('7 ')7#2('7 ’)a 7'1(', ')7 7—2(', ')7 and "31(', ) refer to

the sesquilinear forms shown in II.9. We represent this linear system concisely as

MN 0 V() | V()
0 MY || V@) | SN (D)

0 MM

(IV.2)
—AY —Af

with
b L
0 M{g 0 Mg
AN - A0 | 0 A
1= ~N |’ 2 - N AN |
0 Ap Az, Ag)
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The component matrices are given by

[ r \
M{Y} =/VBI’? - VB}* dw MY ] ‘ =/ OZBr 2B dy
L k2 Q i i3 To
~ N _ _p_f m DM | N } :/ n PN
_ M3 ]k,e /ch BB dw - M;), g FopbBZ B? dvy
[ . m [ n )
| = / o/ VBP -VBPdo | Al ]..= EI92Br0?Br dy (IV.3)
g Akt Q L 1,7 To
r 7 r
AN | =— psBi*(2,0)B] dy ALY, } .2/ psBy (z,0)B} dy
L di 8 o | ki To
Ay | = / cpI92Br92BT dy,
B = iv] FO

where the finite dimensional products correspond to the infinite dimensional sesquilin-
ear forms given in I1.9.

The finite dimensional representation of Model II is similar to that given above
for Model I, except the matrix AY contains the additional sub-matrix A}], which arises

because of the boundary damping along I'. For Model II, AY is given by

N N
A41 A31

N _
4 = AN AN
32 22

The component matrices for Model II include all of those specified in IV.3 as well as
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[A{yl] = [ 20 By By dy (IV.4)
k£ r

”

which corresponds to the weak form A;(¢, £). The linear system for Model 11 is given

by
[ 5T, B, BY) 0 0 0 1T é
0 (X0 BY, BY) 0 0 wilt) | _
0 0 p2(T7y BY, BY) 0 b) |
| 0 0 0 pr(i5 BY,BY) | | () |
M~ N (8)
0 0 1S, B, BY) 0 [ 6t)
0 0 0 Bo(Yi, Br, BY) w;(t)
—p2(Then BR, BY) 0 M(Tio BEBY)  n(Ti BEBR) || i)
| 0 (5B BY) (i B B) =m0 BEB) | | ()
AN 0

As mentioned previously, the rows of each block sub-matrix are generated by holding
¢ and j fixed while varying k and i as appropriate for the particular product being
computed.

The general form of matrices M9V (¢) and AY9N(¢) is presented below to
help the reader better conceptualize the overall structure of the system. The block
structure of M{" and AY is characteristic of the larger matrices MY and AN for
both Models I and II. Also, the products represented by (-,-) in the matrices below
correspond to those given for Model I sub-matrices My, M{}, A, AN, and AL in

IV.3. We represent these matrices as

MNIN(t) =
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[ (BT, BT")
(BT", BY')

(BT, Br_1)
(BT, BR)
0
0

0

0
(BT", BT")
(BT", B")

(Bini Bvrrrf—l)
L (BT, BR)

1 »~m

(B3, B") (B, BT)
- (B Bm-1)

(Bz—laB:r’:) (B,’,?,BZ)

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
(B3, BT") (B, BT)
(Bm-1,Br)  (Bm,BR)

0

0
(BT, BT)
(BT, B%)

(BT, Br_»)
(BT, Bi-1)

(BT, BY)
(BT, B)

(B? ’ B:—Z)
(B‘f 3 B:zl-—l)
(BT, BY)
(BT, B3)

(BmaBm—l) (B?aBZ—Z)

(BT, Br-1)

0

0
(Bn-1, BY)
(Ba-1,B3)

(Ba-15Bn-2)

n—1>

(Br-1,B3-1) |

(Br-1, BY)
(Bn_1,B%)
(B:zl—la B;LL—Z)
(Br-1,Br-1)
(Bg—l: B,f)
(B;Ll—h Bg)

(B:—h Bg-z)

[ ¢V (1)
o3 (t)

N1 ()
i
Wy (1)
¥ (1

Wy (t)

(Br-1,B3-1) |

| 1 (t) |

Dimensions of the matrices and sub-matrices associated with Models I and 11

are:

MY AN . 2(m+ (n—1)) x 2(m + (n — 1))

MY, My, AY, A o (mt (n—1)) x (m+ (n— 1))
MY, MY AN ALY : mxm

ME ME, AN AN : (n—1)x(n—1)

AN : mx(n-1) A0 (n—1)xm

In Chapter V, we obtain specific numerical approximations of M" and A" for

Models I and II, and examine the stability of these finite systems to gain insight into

the stability of the infinite dimensional systems I1.8 and II.19.
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V. SPECIFIC APPROXIMATIONS AND
RESULTS

In this chapter we select specific basis functions for discretization of the beam
and cavity, discuss development of the computer programs used to generate matrices
of the finite systems developed in the previous chapter, and present results for specific
approximations.

Cubic splines and tensor products of Legendre polynomials are chosen as basis
functions for the beam and cavity spaces, respectively (We refer to the tensor prod-
ucts of Legendre polynomials as “tensored Legendre polynomials” throughout this
paper.). Since these choices are by no means the only possibilities, the interested
reader is referred to [Ref. 9] for a discussion of alternate choices as well as selection
criteria which includes: smoothness requirements, uniform preservation of exponen-
tial stability of approximating systems, accuracy, sparsity of system matrices, and
ease of implementation.

The cubic splines used as a basis for H satisfy the smoothness requirements
and are easily adapted to satisfy the clamped boundary conditions. We construct
the set {Br}%! by first partitioning the beam into n uniform intervals of step size
h= b’T“ Letting B}‘ denote the standard cubic spline corresponding to this partition,

then the basis functions for the beam discretization are taken to be

B = Br — 2B} — 2B™,

B! = Af‘ for1 =2,3,---,n—2

7

~

n  __ Dn N 230
Bn—l - Pn T 2377,-—1 - QBn-H )
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where the standard cubic splines, as defined in [Ref. 11], are given by

(¢ —zi2)°, ifz € [ziig,zi]

h3 4+ 3h*(z — z;1) + 3h(z — 2,21)% — 3(z — z;1)°, ifz €[z ;1,7
Bz(z) === k3 - 3h2($,‘+1 - .’ZI) -+ 3h($i+1 - ZIJ)2 — 3(.%5.;.1 - ;U)a, ifz € [3:,-, xi-f—l]
3

(Tiy2 — 2)°, ifz € [Zig1, Tiga)

0, otherwise.

All of the basis functions B do in fact satisfy the clamped boundary conditions
BP(0) = 8.B7(0) = BY(a) = 0.B7(a) = 0

for t = 1,2,---,n — 1 as can be seen in Figure 4 below where the interval [0,1] is
partitioned into 10 uniform subintervals. The dashed curves represent B} and B]_,
which have compact support over three intervals. The interior splines, which have
compact support over four intervals, are denoted by solid lines.

Tensored Legendre polynomials are used as a basis for H*. As stated in [Ref.
9], these polynomials produce smaller, more structured matrices than those obtained
with linear splines or finite elements, and the natural boundary conditions along
the cavity walls obviate modification of the basis elements to satisfy some essential
boundary conditions. Authors of [Ref. 9] assert, however, that these benefits are not
as critical in the 2-D case as they are in the 3-D problem where system matrices are
considerably larger.

The basis set of tensored Legendre polynomials is obtained by forming the
product of transformed Legendre polynomials, denoted L(z) and Lé(y), where the
subscripts ¢,7 indicate the degree of the polynomial, from the interval [—1,1] to
[0, a] x [0,{], respectively. The transformed polynomials are obtained by substituting
an appropriate linear transformation for z in the recursive definition of the standard

Legendre polynomials:

Posi(z) = nL_H[(Qn + 1)2Py () — 2oy (2)] (V.1)
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Basis Splines (Cubic) for the Beam

Y-axis

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4. Cubic Polynomial Splines

with Po(z) =1, Pi(z) ==z .

For example, substituting £ for z in definition V.1 transforms the standard
Legendre polynomials from [—1,1] to [0,1]. Orthogonality of the Legendre polyno-
mials is preserved under this linear transformation (see Figure 5). Recalling that the

set of basis functions for the cavity is denoted {By*}7-,, we define B as

E=1,2,---,m
B,T(x,y):Lf(x)Lé(y) for i=0713"'7mx+1 ’ (V2)
J=0,1,---,my +1
where we impose the condition 24 7 # 0 to eliminate constant functions (i.e., exclude
Lg(z)Li(y) = 1 for all (z,y)) ensuring the set of functions is suitable as a basis for

the quotient space. Hence, the dimension of the cavity space is m = (m, + 1)(m, +

1) — 1. For consistency throughout this paper and in our computational algorithms,
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Translated Legz/andre Polynomials
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X-axis

Figure 5. Transformed Legendre Polynomials

the subscript k£ shown in V.2 is determined by holding ; fixed while 7 varies. As an

example, the indexing scheme for m; = 2 and m, =2 is

B (z,y) = L (2)Lo(y) BP(z,y) = L3(2)Li(y)
By(z,y) = L§(z)Lo(y) Bg'(z,y) = L§(z)Ls(y) (v3)
B'(z,y) = L§(z)Li(y) B7(z,y) = Li(z)Li(y)
By(z,y) = Li(z)Li(y) Bg(z,y) = L§(z)L5(y)-

Having selected basis functions for the beam and cavity spaces, we now turn
our attention to the computation of the various component matrices associated with
Models I and II. All computations are done using MATLAB (MATLAB is a high-
performance interactive software package produced by The MathWorks, Inc., for sci-
entific and engineering numeric computation.). Programs written for our numerical

work are found in Appendix A.
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Matrices M{Y, M}, and AL are all computed similarly since they each involve

integration over the cavity space. In Chapter IV we defined these matrices as

[le\{] =/VB,T-VBgndw, [Mg] / PIgmBr o,
k£ Q kL

(V.4)
[A{\g ] :/prB,T.VB?dw.
k£ Q

The matrices are computed by a routine suggested in [Ref. 9]. For the moment,

consider the integrand of Mj{ where Bf* = L?(z)L}(y) and By" = Le(z)LL(y):

[ VBl -VBy = (8,BP 8,By)- (0.By,8,By)
(0
(
= (

o(LEL5), 0,(LEL3)) - (8x(LyLy), 8y(Ly L))
Lio,L%, L20,LY) - (Lto, L2, L8, L)

(Rt}

pYp

L1810, L2) + (LEL28, L}, L1).

Because of the structure of the integrand, we make use of the tensor properties of the
transformed Legendre basis functions to construct M}y, M}, and AY. Orthogonality

of the transformed polynomials reduces computational complexity since
/ [LL} =0and /0 LeLZ = 0 whenever j#qand i #p.
First construct fundamental (m; + 1) x (m, + 1) matrices M™ and K™ given by
MPly = [ L3(@)Ly(2)de and [KPlp= [ 8.L3(2)0.L3(x) ds
0 0

with similar definitions for M;* and K* (in fact, M = M;* and K™ = K}* when
m,; = my and [0,a] = [0,]). By orthogonality of the transformed Legendre polyno-
mials, matrices M7 and M}* are diagonal. The matrices MY and MY are formed by
computing

MY =M®KI+ K" ®@M™ and ME{:%MZ‘@MZ’L.

The symbol ® denotes the tensor product, which we accomplish by using MATLAB’s

kron function. The ordering in the above definition is not obvious; however, attention
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to the indexing scheme shown in V.3 and as described in Chapter IV delineate our
convention. M} and MY} are obtained by removing the first row and column of M\lj\l’
and M\zj\lf reflecting the deletion of the constant function from the basis set. Since we
take p; to be constant in this paper, A} is trivial to compute. Matrices M{y and AN
are positive definite and symmetric—although not sparse. MJ is diagonal, positive
definite. The program matten.m, written to generate these matrices, computes the
transformed Legendre polynomials and their derivatives iteratively. Integration of the
differentiated transformed Legendre polynomials is accomplished by using Gaussian

quadrature, while the orthogonality relation for Legendre polynomials, given by

12

b—a [1 b—a 2
5 ), P.(t)Ps(t)dt = 5 o 11O

is used to compute the integrals of the translated Legendre polynomials (4,s; denotes
the standard Kronecker delta: 6, = 0ifr # s, = 1 if r = s). Note that b—;ﬂ s a
simple transformation factor which enables one to use this exact integration formula
for integration over an interval [a, b].

Since matrices MY, MY, Al and Al given by

[ay| = [ emama, [wmy] =[ sbEra,
2,7 Y 1]

47

[ A%J - / EI192Bro2B! dy, [ A%] - / cplO2BrO2BY dy,
2.1.7' Fo 6,7 I—‘0

[2¥

(V.5)

all involve cubic spline functions or their second derivatives, they are computed sim-
ilarly. The program myspline.m is used to generate the set of basis splines. Intrin-
sic MATLAB functions polyder and conv are used to differentiate and compute the
product of the cubic splines. A simple program, polyint.m , performs the neces-
sary integration. The programs used to compute MY, ML, AY,, and AL, capitalize
on the symmetry of the spline functions (mat1222.m computes M7, AY,, and AL;
matm22.m computes My ). Because the splines are equal to zero outside their regions
of compact support, these four matrices become seven-banded for n > 10. All four

are symmetric and positive definite in construction.
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ey R e

The elements of matrices A}, and AL, correspond to the integrated product
of the collapsed tensored Legendre polynomials (i.e., By* = L#(z)L%(y)|y=0) and the

cubic splines over the interval [0, a]. Recall these matrices are given by

| =/ psBI(z,0)BE(z) , dy.

|45 ] = @B iy ama [ag] <[
These two matrices are computed using the function ¢3132.m . Integration, done us-
ing Gaussian quadrature, is accomplished using MATLAB’s intrinsic function polyval
to evaluate polynomials at translated Gaussian knots. Note that computation of each
element of AY and AL, actually requires three or four integrations rather than just
one (three if splines By ™! or B7| appear in the integrand; four for integrands involv-
ing interior splines). This is due to the piecewise construction of the cubic splines

over their respective regions of compact support. For example, if B is an interior

spline, integration over I'g is given by

[ piBr@)BP(e,0)dy = [ pBr@)Bl(a,0)dy
0 0

z—1 T
= [ 0Br@)Br(e,0)da+ [ psBI(e)By(z,0)da

-2

z+1 z+2
+ [ pBr @B 0 dr+ [ psBi(2) By (2,0) d.

Although ALY and AJ, are both full matrices, their computation is simplified since
each has a well-defined block structure. Further, since we take p; to be constant, AL,
is precisely the negative transpose of A} (i.e., AY, = (=AY)T).
The function matafl.m is used to compute
43],, = [eesBrBray
= aps| [ BPOWBFO.W dy+ [ BEaDBF(@0) da
1 2

+ [ BrayBPey) ]
3

k£

Fundamental matrices corresponding to integration across I';,I's, and I's are com-

puted and then summed to generate AY. Because of the well-defined, block diagonal

41




structure of the matrices corresponding to integration across I'; and I's, these ma-
trices are computed simultaneously. The matrix produced by integration across I's,
although not sparse, possesses symmetry along diagonals which simplifies its con-
struction. Given the structures of these fundamental matrices, AY is symmetric with
a well-defined block-diagonal and symmetric off-diagonal construction.

In light of the structures of the component matrices discussed above, we note
that for both Models I and II: (i) the matrices AY and M" are symmetric and
positive definite by construction, and (ii) AY has symmetric and skew symmetric
block construction (A € R™ " is said to be skew symmetric if AT = —A.).

We are now ready to examine the stability of the approximation schemes devel-
oped for Models I and II. For our numerical work we assume the following parameters,

which according to [Ref. 9], are physically reasonable for a .6m by 1m cavity:

a=.6m, l=1m, pr=1.21%

= 11764925 | p, = 1.355 BT =73.96 Nm?

sec?

epl = 001522

sec

Note: For Model II, we take the proportionality constant a = 1, where a appears in

the boundary condition (equation II.18)

On¢p = —a¢, for (z,y) e, t>0.
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MODEL I : For n = m; = my, = 6,7,---,18 the margins of stability for the open
loop system are listed in Table I. For each n, the locations of the eigenvalues, A,
are displayed in Figures 6, 7 and 8. Eigenvalues were obtained using MATLAB’s
toolbox function eig( A", M™), where matrices AV and M¥ are shown in equation
IV.1. Eigenvalues having real parts with magnitude greater than 1 are excluded from
our plots in order to better see the distribution near the imaginary axis.

For small n, the results obtained agree very favorably with those reported in
[Ref. 9]. Comparison of the values shown in Table I indicates that there does not
appear to be a uniform margin of stability between the eigenvalues and the imaginary
axis (i.e., the data in Table I does not indicate that the maximum R()) for the cases
tested is converging to a limit.). This is what we expect based on the conclusions
contained in [Ref. 5]; however, we are somewhat hesitant to report this finding since
positive eigenvalues appear in our results for n > 17. These positive eigenvalues
should not appear since Model I is dissipative, and therefore, all eigenvalues of the
system should lie in the left-half complex plane (i.e., (1) < 0). The absence of
a clear .margin of stability, as well as the appearance of positive eigenvalues, may
represent a numerical/computational instability problem. We offer two reasons for
our suspicions.

e During the development of the programs used to compute the component
matrices M"Y, AN we were able to delay the appearance of positive eigenvalues by
Incorporating more stable computational methods. Our early programs relied heavily
on MATLAB’s intrinsic “poly-type” functions (e.g., polyder, conv, polyval ) and our
simple polynomial integration program polyint.m. We modified our code so that
integrations involving tensored Legendre polynomials—or derivatives thereof—is done
either by using Gaussian quadrature or by well-known properties of the Legendre
polynomials. Before these changes, we observed positive eigenvalues for n = 13.
However, after incorporating these more stable techniques, positive eigenvalues did

not appear until n = 17.
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o We first attempted to find eigenvalues by calculating D = (M")~1 A" and
by using MATLAB’S eig(D). However, for values of n > 13, MATLAB returned warn-
ings that D was near singular. We then sought to solve the generalized eigenvalue
problem using MATLAB’s eig( A", M"), seeking a more computationally reliable al-
gorithm for the problem at hand. Note that for n < 12, eig(D) and eig(AN, M™)
returned very similar results. The consistency of the patterns shown in Figures 6, 7,
and 8 (all generated using eig (-,-) ) lend confidence to our belief that eig(AY, M)
provides more reliable results than does eig (D) (Note that eig(-,-) did not return
any “near singular” warnings even when tested using very poorly conditioned ma-
trices.). Nonetheless, computational instability may increase as n does since MAT-
LAB’s etg(-,-) function uses a Q7 algorithm and, according to [Ref. 14], some QZ
algorithms destroy both the symmetry and positive definiteness of the semi-definite
pair (AN, M7).

Finally, inspection of the eigenvalue plots appearing in Figures 6, 7 and 8
reveals a consistency in pattern even for n = 17,18, when positive eigenvalues appear.
Thus our computational approach does not fail catastrophically for a particular (large)
n; rather, it degenerates as the matrix systems become increasingly singular as n

increases.
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MODEL II : Results obtained for n = m, = m, = 5,6,-- -, 20 are listed in Table II.
Figenvalue plots are displayed in Figures 9 and 10. The MATLAB toolbox function
eig( AN, M) is again used. Eigenvalues having real parts with magnitude greater
than 30 are not displayed in order to better see the distribution near the imaginary
axis.

The data reveals that while eigenvalues lie further away from the imaginary
axis, as expected, given the dissipative boundary conditions assumed along I' as well
as I'o, no definitive uniform margin of stability appears to exist. That is, the values
shown in Table II are creeping towards the imaginary axis as n increases. Although
this movement cannot be seen from Figures 9 and 10, the figures do reveal consistency
in the eigenvalue plots as n increases. Nonetheless, this creeping phenomena may not
be an indication that the infinite dimensional system lacks uniform exponential sta-
bility. Rather, the problem may be related to our numerical/computational approach
for the reasons stated above.

For Model II, we see that (i) the maximum real part of the (non-zero) eigen-
values lie further away from the imaginary axis in this model than they do in Model I,
and (ii) the dimension of the approximating solution spaces can be increased without
the appearance of positive eigenvalues, (at least up to n = m, = m, = 20—the extent
of our testing). Thus Model II is likely the better choice for use in formulating the

noise control problem.
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n =m; =m, | max{R(A)}
6 -0.021207
7 -0.019998
8 -0.015566
9 -0.010471
10 -0.006223
11 -0.004555
12 -0.005533
13 -0.005440
14 -0.006347
15 -0.006806
16 -0.001130
17 +0.050618
18 +0.051744

Table I. Model I: Margin between the open loop eigenvalues () and the imaginary
axis.

n =m, =m, | max{R(1)}
5 -1.218388
6 -1.250145
7 -1.133252
8 -1.388610
9 -1.104220
10 -1.108291
11 -1.088381
12 -1.087316
13 -1.076611
14 -1.072313
15 -1.065708
16 -1.060883
17 -1.055837
18 -1.051932
19 -1.047767
20 -1.044687

Table II. Model II: Margin between the open loop eigenvalues (1) and the imaginary
axis.

46




x 10* N=MX=mMy=6
4
o
2t (7N @O
°©,32g O‘9000%0@ >
0 o7 @ o8
o o%dg@cb P o’
°© B oo oo
-2 0000 ©0
1 -0.5 0
max{Re(ev)}=—0.021207
x 10% N=Mx=my=8
4 To
© o >
@00
2l @ ©
&0 @o o
RALILE: £ S
B & o @o o @
@0 @o o
-2t & 4
o ®
-4 ° rol® -
-1 ~0.5 0
max{Re(ev)}=-0.015566
% 10* N=mMx=my=10
4
o
2 R o °
P, 0P o ©
- > o )
(o]
-4
-1 -0.5 [¢)
max{Re(ev)}=-0.006223
x 10% n=mMx=my=12
4
2
O
OCS’ © OCD@O 8
) Oo ocu&o
-2
-4
-1 -0.5

max{Re(ev)}=—0.005533

x 10* n=mx=my=7

Co
(oS} G;P
2' (@] le) O

o® @ o
o.o o° oo%% @%go"e
%o 00?8 ®o oo

ot o Oo ° @»o
o) o axy
o]
-4
-1 -0.5 (o]
max{Re(ev)}=-0.019998
x 10* N=mMxX=my=9
4 o]
Doo
o o
%o °
a0 © o
08 8 O@@ o 80 08
g ogo@®> o ©
o fs) @ 0 o (o]
2r 5 o
a 00
—4 O
-1 -0.5 0
max{Re(ev)}=—0.010471
4 x 10% n=mx=my=11
2 L
H o° o
op BooGo © g %
D oo o o ©
h & @ o° °
2} o] ©
-4
-1 -0.5 0]
max{Re(ev)}=-0.004555
x 10* n=mx=my=13
4
2 -
° o
b P BLRY o o
of o8
¥ %O@Q&o e °
4 o
2t
-4
-1 -0.5 o]

max{Re(ev)}=-0.005440

Figure 6. Mod I: Eigenvalues for n = m, = m, = 6,7,8,9,10,11,12,13.

47




x 10* n=mx=my=14

(@]
?e& &%O 080 008
e BT oo

-2t

-4
-1 -0.5

max{Re(ev)}=-0.006347
104 n=mx=my=16

X

e o)
-3

350@%30 %o "80%

8
ggO@Cg;o ° cc &

0

4L e o]
-1 -0.5
max{Re(ev)}=-0.001130

x 10% n=mx=my=15

(]

D
380%%0 Oo C
3%0@%)0 o©~o

o

-1 -0.5
max{Re(ev)}=-0.006806

Figure 7. Mod I: Eigenvalues for n = m, = m, = 14,15, 16.

48




x 10% N=mx=my=17
4 o}
2 L
%g oo, & o, &
of o % (o] 80 [+}
o ©
o (¢}
% %@oo o0 X %
-2
4 o
-1 ~-0.5 0
max{Re(ev)}=0.050618
x 10* N=MxX=my=18
4
o)
2
Boo &P O% o® (o]
&, O
o % o % fg o 80 °8
154 ©
[e) :% o
:%0 N o® 05 X %
-2
o}
-4
-1 -0.5 o

max{Re(ev5}=0.051 744

10° N=mMX=my=17

1.5
| co © BB
05! e o
o &8 FWo
-0.5 (- o
~1}
0 » B o
-1.5
-0.4 -0.2 0
max{Re(ev)}=0.050618
x 105 n=mMx=my=18
1.5
co Gm¥Ro
1
0.5¢ a® O o
of &8 Xo
-0.5 o o o
-1
0GP0 GO0
-1.5 0 D ﬁ)
-04 -0.2 (o}

max{Re(ev)}=0.051744

Figure 8. Mod I: Eigenvalues for n = m, = m, = 17,18.

49



% 10* N=mX=my=5
2
o
1 & Co®
. &%
o} aD oo Fad woog
K
e
-1 5 ©
-2
-30 -20 -10 o
max{Re(ev)}=—1.218388
x 10% N=Mx=my=7
2 o5 R
> o
1 C§
o
o o °%8%
of oo _J oo ooc@o oo
oo o %®
-1
%C% o O®
-2 O o
-30 -20 -10 0
max{Re(ev)}=-1.133252
x 10% N=Mx=my=9
2
& o
1 © °
o
o o ©
ot o @ o ooBoo oo
o ° 4
°© [}
-1 o o .
2 >
=30 —20 -10 0
max{Re(ev)}=-1.104220
4 n=mx=my=11
> x 1 o0

oD @

o]
-1
° o
DL ©® %@
'_230 -20 -10 0

max{Re(ev)}=-1.088381

0 L
e}
0.0
~1 (Q’%o o®
o
-2
-30 -20 -10 0
max{Re(ev)}=—1.250145
X 104 n=mX=my=8
2 &, °%
& o
1' % o) %
o B
o o ©
ot o 00 o ocSao amood
o) (¢} o
o@%
-1} o
& ©
_ ®p e
-30 -20 -10 0
max{Re(ev)}=-1.388610
x 10* n=mx=my=10
2 %
o 8 @ (@

o o
Of® @ o_o oaBoo cwoog

"y

(o]

(o]

o?.éﬁﬁ

o
° o Boo
-2 &£
-30 -20 -10 0
max{Re(ev)}=-1.108291
x 10* n=mx=my=12
2 o
000 &
o

Q
oro Q0O O © OO

o]

O co
coo 9
-2 I °
-30 -20

max{Re(ev)}=-1.087316

Figure 9. Mod II: Eigenvalues for n = m, = m, = 5,6,7,8,9,10,11, 12.

50



x10* n=mx=my=13 x10° n=mx=my=14
2 o 5 2 =
o o© 006610%%%% o © O§ 89‘1)00)0
o © G 8 0o 00&
1 Y 1t
o o
o %
0f@ 90 0 © o oxfeo oo of@ w o ooooocgooooooe
(o} © o
- ocw 08 - 00 009Q
(e} : OCo
o o Po o © o o
- - of@%ooo (e} 2 ) 9)@@0
-30 -20 -10 0 -30 -20 -10
max{Re(ev)}=—1.076611 max{Re(ev)}=-1.072313
x 10% n=mx=my=15 x10% N=mMx=my=16
2 (0] O‘%% & 2 N
o o co o
wo ©°8 ©
1 1
o
)
Ofco @ o ooooccgoocoooe 0foo @ o ooooccgooco
°© o
-1 © 8 -1
o o o o
o e} [e) o
-2 o] Or@(‘P ° _2 fo) P
-30 -20 -10 ~30 -20 -10 0

max{Re(ev)}=-1.065708

max{Re(ev)}=-1.060883

x10% n=mx=my=17
oo Q %60 @O !
ooo 08°
1
o
o %o
0foo @ o © o ocfoo wood
o OO O~ &
o | 0o 8
o o >
-2 08, hiadh o e
-30 -20 =30 -20 -10 0
max{Re(ev)}=—1.055837 max{Re(ev)}=~1.051932
5 x 10° n=mx=my=19 5 x10° n=mx=my=20
e o $ 6& [e]
d) g Oo © ® &
1 1
o o
ofco @ o © o oafoow 0joc @ o © ooaBaom
-1 -1}
) % o
> g8 o> > 652 R ® . ¢
-~30 -20 -10 0

-30 -20
max{Re(ev)}=-1.047767

max{Re(ev)}=—~1.044687

Figure 10. Mod II: Eigenvalues for n = m, = m, = 13,14, 15,16,17, 18,19, 20.

51



52



VI. CONCLUSIONS

In this paper we investigate, by numerical approximation, the uniform expo-
nential stability of two infinite dimensional systems developed to model the acous-
tic/structure interaction of a fluid-filled, rectangular cavity (known to be dissipative).
Model I assumes dissipative boundary conditions along one side of the boundary, while
Model II assumes dissipation boundary conditions along all four sides of the cavity.
We formally obtain weak variational formulations for these two models, express each
as a finite dimensional system by discretizing the solution spaces for the acoustic pres-
sure ¢(t,z,y) and transverse displacement of the beam w(t,z), and use the Galerkin
technique to transform the systems of PDEs into systems of ODEs. We evaluate
the uniform exponential stability of these systems by examining the location of their
eigenvalues in the complex plane. Eigenvalues of these systems are determined by

solving the generalized eigenvalue problem (AMY — AV)§N = (. We found that:

¢ The numerical approximations do not reflect the existence of uniform margins of
stability for either model. The maximum real eigenvalues do not appear to be con-
verging towards a greatest upper bound as the dimensions of the finite systems in-
crease. Nonetheless, our numerical results clearly indicate that Model II provides a
wider margin of stability than does Model I and, thus, is likely a better choice when

formulating the noise control problem.

e The choice of cubic spline and tensored Legendre polynomials—in concert with the
use of the Galerkin method—(i) simplifies computation of the component matrices of
M" and A", and (ii) contributes to the overall structure of M" and A" simplifying

the computation of eigenvalues.
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Possibilities for future work to include:

e Investigate alternate methods of solving the generalized eigenvalue problem rather
than using MATLAB’s eig (AY, MV). Alternate methods should attempt to capital-
ize on the structure of the semi-definite pair (A", M"). MATLAB’s eig (-, ) function
uses the QZ algorithm and may be destroying both the symmetry and positive defi-
niteness of the pair (A", M") as some QZ algorithms do. An alternate approach to

the generalized eigenvalue problem is suggested in [Ref. 14].

o Assume different dissipative boundary conditions and numerically analyze the sta-
bility of these systems using various approximation schemes. Consider models with

medium damping and/or different coupling mechanisms between the acoustic and the

structure components [Ref. 5].

e Investigate the numerical stability and preservation of exponential stability of the
approximation schemes presented in this paper with different choices of basis functions

to discretize the beam and cavity solution spaces, or use different schemes altogether.

e Investigate other mathematical libraries such as NAG or IMSL, which may have

reliable subroutines for solving the generalized eigenvalue problem presented in this

paper.
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APPENDIX. MATLAB FUNCTION AND
SCRIPT FILES

This appendix contains the programs used to compute the eigenvalues and

produce the eigenvalue plots shown in this paper.

1. Below are examples of the MATLAB script files which call the various function
files shown in this appendix, as well as several intrinsic MATLAB files, for eigenvalue

computation and plotting.

3ok ok o ok ok Sk 3 ok sk sk skok sk ok ok Model I, Eigenvalue Computa’tion 3k ok ok ok ok e ok ok ok ok sk ok
n=6; mx=n; my=n; a=0; b=.6; el=1; rhof=1.21; rhob=1.35; c=sqrt(117649);
EI=73.96; cdI=.001; [M11,M21,A11]=matten(mx,my,b,el,rhof,c);
[M12,A12,A22]=mat1222(a,b,n,EIl,cdI); [M22]=matm22(a,b,n,rhob);
[A31,A32]=a3132(a,b,n,mx,my,rhof) ; m=(mx+1)*(my+1)-1; nmi=n-1; t=m+nmi;
=zeros(t,t); Mi1=[Mi1 zeros(m,nml); zeros(nmi,m) M12];

M2=[M21 zeros(m,nmi); zeros(ami,m) M22]; M=[M1 T; T M2];

A1=[-A11 zeros(m,nml); zeros(nml,m) -A12];

A2=[zeros(m,m) -A31; -A32 -A22]; A=[T M1; A1 A2];
ev6=eig(full(4),full(M)); eb=max(real(ev6)); subplot(2,2,1); tt=4%10"4;
axis([-1 0 -tt tt]); hold; w=[0 0]; g=[-tt tt]; plot(w,q);

ww=[-1 0]; qg=[tt ttl; plot(ww,qq); plot(ev6,’0’); title(’n=mx=my=6’)

sk ok o ok ok sk sk sk ok ok ok ok Model II, Eigenvalue Computation skok ok ok ok ok ok sk ok ok ok
n=6; mx=n; my=n; a=0; b=.6; el=1; rhof=1.21; rhob=1.35; c=sqrt(117649);
EI=73.96; cdI=.001; [M11,M21,A11]=matten(mx,my,b,el,rhof,c);
[M12,A12,A22]=nat1222(a,b,n,EI,cdI); [M22]=matm22(a,b,n,rhob);
[A31,A32]=a3132(a,b,n,mx,my,rhof); A41]=a41(b,el,mx,my,rhof,c);
n=(mx+1) *(my+1)-1; nmi=n-1; t=m+nml; T=zeros(t,t);

M1=[M11 zeros(m,nml); zeros(nml,m) M12];

M2=[M21 zeros(m,nml); zeros(nmi,m) M22]; M=[M1 T; T M2];

A1=[-A11 zeros(m,nml); zeros(mml,m) -A12]; A2=[A41 -A31; -A32 -A22];
A=[T M1; A1 A2]; ev6=eig(full(A),full(M)); e6=max(real(ev6));
subplot(2,2,2); tt=2%10"4; axis([-30 0 -tt tt]); hold; w=[0 0];

q=[-tt tt]; plot(w,q); ww=[-30 0]; qq=[tt tt]l; plot(ww,qq);
plot(ev6,’0’); title(’n=mx=my=6’)

kKK KoK ok o ok sk ok ok koK ok ok ok o o ok sk ok ok o ok ok sk ok s ok sk sk ok ok ks sk s ok sk sk s o ok sk sk ok sk ke sk sk ok sk ok ok ok sk ko
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2. Function file matten.m computes M7y, MY and AY.

Sk ok ok ok ok o sk ok ok sk ok ok ok ok ok sk ko ko sk sk ok ok sk ok sk sk sk ok sk sk sk skt sk sk sk ok ok sk sk ok ok ok
function [M11,M21,A11]=matten(mx,my,b,el,rhof,c)

% [M11 M21 A11] = matten(mx,my,b,el,rhof,c)

%
% This function produces matrices M11, M21, and All--all are
% (mx+1)*(my+1)-1 by (mx+1)#*(my+1)-1

% Input: mx = highest degree of Legendre basis poly for x-axis
% my = highest degree of Legendre basis poly for y-axis

% b = right end point along x-axis (i.e., [0,b])

% el = right end point along y-axis (i.e., [0,el])

% rhof = uniform density of fluid

% ¢ = speed of acoustic wave in fluid

% Written by Major J. M. Shehan, last update 21 May 95.

% Begin matten.m

%%% Compute M1t
if mx == my & b == el
mx1l=mx+1; x=ones(1,mx1); vx=1:2:2*mx1; intPPx=b*(x./vx); Ma=intPPx;
% Determine Gaussian weights (w(i)) & evaluation points (x(i)).
x=1:1:mx-1; x=x./sqrt((2*x+1) .*(2*x-1)); j=diag(x,1)+diag(x,-1);
[u xJ=eig(j); =x=diag(x); [x il=sort(x); wu=u(:,i); w=u(l,:)."2;
w=w’.*2; dx=b/2;
for i=1:mx; s=x(i); p(i,1)=1; p(i,2)=s;
dpn(i,1)=0; dpn(i,2)=1;
for j=2:mx
p(i,j+1)=C((2*j-1)*s*p(i,j)-(G-1)*p(i,j-1))/3;
dpn(i,j+1)=((2%j-1)*s*dpn(i,j)-(j-1)*dpn(i,j-1)+(2*j-1)*p(i,j))/j;
end
end; DPxval=dpn’;
for i=1:mx1

for j=1:mx1
Ka(i,j)=(2/b)*sum(w’ .*DPxval(i,:).*DPxval(j,:));
end
end;

hthhh% Mel=Ma and Kel=Ka when b=el and mx=my.
Mad=diag(Ma); sMad=sparse(Mad); sKa=sparse(Ka);
M11T=kron(sMad, sKa)+kron(sKa,sMad); [row,col]l=size(M11T);
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M11=M11T(2:row,2:col); All=rhof*sparse(M11); %Mi1=full(M11);
W%k Compute M21
M21T=kron(Ma,Ma); t=length(M21T);
M21=sparse(diag((rhof/c"2)*M21T(2:t)));
else
hh% Compute integrals of Legendre poly’s.
mx1=mx+1; x=ones(1,mx1); vx=1:2:2%mx1; intPPx=b*(x./vx); Ma=intPPx;
Mad=diag(Ma);
myl=my+1; y=ones(l,myl); vy=1:2:2%myl; intPPy=el*(y./vy); Mel=intPPy;
Meld=diag(Mel) ;
% Compute deriv’s & eval ’product’ integrals of translated Legendre’s.
% For x-axis: Determine Gauss weights (w(i)) & eval points (x(i)).
x=1:1:mx-1; x=x./sqrt((2*x+1).*(2*x-1)); j=diag(x,1)+diag(x,-1);
[u x]=eig(j); =x=diag(z); [x il=sort(x); u=u(:,i); w=u(1,:)."2;
w=w.*2; dx=b/2;
for i=1:mx; s=x(i); p(i,1)=1; p(i,2)=s;
dpn(i,1)=0; dpn(i,2)=1;
for j=2:mx
p(i,j+1)=((2%j-1)*s*p(i,j)-(G-1*p(i,j~-1))/j;
dpn(i, j+1)=((2%j-1)*s*dpn(i,j)-(j-1)*dpn(i,j-1)+(2*j-1)*p(i,i))/j;
end
end; DPxval=dpn’;
for i=1:mx1
for j=1:mx1
Ka(i,j)=(2/b)*sum(w.*DPxval(i,:).*DPxval(j,:));
end
end
% For y-axis: Determine Gauss weights (w(i)) & eval points (y(i)).
y=l:1:my-1; y=y./sqrt((2%y+1).*(2xy-1)); j=diag(y,1)+diag(y,-1);
[u yl=eig(j); y=diag(y); [y il=sort(y); u=u(:,i);
wy=u(1,:).72; wy=wy.*¥2; dy=el/2;
for i=1:my; sy=y(i); py(i,1)=1; py(i,2)=sy;
dpny(i,1)=0; dpny(i,2)=1;
for j=2:my
py (i,j+1)=((2*j-1*sy*py(i,3)-(G-1*py(i,j-1))/3j;
dpny (i, j+1)=((2%j-1)*sy*dpny(i,j)-(j-1)*dpny (i, j-1)+(2*j-1)*py(i,j))/j;
end
end; DPyval=dpny’;
for i=1:myl
for j=1:myl
Kel(i,j)=(2/el)*sum(wy.*DPyval(i,:).*DPyval(j,:));
end
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end
%%% Compute M1l & A11
sMad=sparse(Mad); sKa=sparse(Ka); sMeld=sparse(Meld);
sKel=sparse(Kel) ;
M11T=kron(sMeld,sKa)+kron(sKel,sMad) ; [row,col]=size(M11T);
M11=M11T(2:row,2:col); All=rhof*Mi11; % Mii=full(M11);
%%%h Compute M21
M21T=kron(Mel,Ma); t=length(M21T);
M21=sparse(diag((rhof/c2)*M21T(2:t)));
end % End ’if‘ statement.

end Y% End matten.m
sk ok ok o ok ok o ok ok sk ook ok sk sk ok sk o o ok sk sk sk ok s sk skeak sk sk sk sk sk ke sk ok sk e ok sk ok ok s ok sk sk ok o sk ok ko ok sk ok o o sk sk e ok skl o ok ok ok
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3. Function file mat1222.m computes M7y, AV, and AL .

s sk ok ok ok ok ok ok sk ok o sk ok Kok ok K ok o s ok ok Kok ok ok ok ks sk sk ok stk s o ok ok ok sk ook sk sk ok o sk sk sk sk ok sk sk sk s sk s ek ok ok sk
function [M12,A12,A22] = mat1222(a,b,n,EI,cdI)

% [M12 A12 A22] = mat1222(a,b,n,EI,cdI)
%

% Returns M12, A12, and A22 matrices.

% Input: [a,b] = domain;

A n = no. of symmetric partitions of interval [a,b];
% EI = stiffness coefficient;
h cdI = damping coefficient.

% Note: n >= 4 required.

% Extrinsic functions called: myspline.m

h

% Written by Major J. M. Shehan, updated 11 April 95.
y Haj P P

% Begin mat1222.m

% Compute step size ’h‘ and generate ’x‘ vector.
h=(b-a)/n; x=a:h:b;

/ Compute the cubic spline basis set for the beam.
[B,B1,Bnmi]=myspline(a,b,n); b1=B1(1,:); b2=B1(2,:); b3=B1(3,:);

bnm11=Bnm1(1,:); bnm12=Bnm1(2,:); bnm13=Bnm1(3,:);

% Compute 2d derivative of cubic splines.
ddbi=polyder(polyder(b1)); ddb2=polyder(polyder(b2));
ddb3=polyder(polyder(b3)); ddbnmil=polyder(polyder(bnmi1));
ddbnm12=polyder(polyder(bnm12)); ddbnmi3=polyder(polyder(bnmi3));

[uu vvl=size(B); :
for i=13:uu-12 % i=13 is index of B(2(1))

D2B(i-12, :)=polyder(polyder(B(i,:)));
end

%%% Compute M12 matrix

if n < 4

error(’n >= 4 required’)

elseif n==4
mill=polyint(conv(ddbl,ddbl) ,x(1),x(2));
m112=polyint(conv(ddb2,ddb2) ,x(2),x(3));
m113=polyint (conv(ddb3,ddb3),x(3),x(4)); mii=m111+m112+m113;

m121=polyint(conv(ddbi,D2B(1,:)),x(1),x(2));
m122=polyint(conv(ddb2,D2B(2,:)),x(2),x(3));
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m123=polyint(conv(ddb3,D2B(3,:)),x(3),x(4)); mi12=m121+m122+m123;

mi131=polyint(conv(ddb2,ddbnmi1) ,x(2),x(3));
m132=polyint(conv(ddb3,ddbnm12),x(3),x(4)); mi3=m131+m132;

m221=polyint (conv(D2B(1,:),D2B(1,:)),x(1),x(2));
m222=polyint (conv(D2B(2,:),D2B(2,:)),x(2),x(3));
m223=polyint(conv(D2B(3,:),D2B(3,:)),x(3),x(4));
m224=polyint (conv(D2B(4,:),D2B(4,:)) ,x(4),x(5));
m22=m221+m222+m223+m224;

M12=[m11 m12 m13; mi12 m22 mi12; mi3 mi2 mi1];

elseif n==
ml1i=polyint(conv(ddbil,ddbl),x(1),x(2));
m112=polyint(conv(ddb2,ddb2),x(2),x(3));
mi13=polyint(conv(ddb3,ddb3),x(3),x(4)); mii=mii11+m112+m113;

m121=polyint(conv(ddbl,D2B(1,:)),x(1),x(2));
m122=polyint(conv(ddb2,D2B(2,:)),x(2),x(3));
m123=polyint(conv(ddb3,D2B(3,:)),x(3),x(4)); mi2=m121+m122+m123;

mi31=polyint (conv(ddb2,D2B(5,:)),x(2),x(3));
m132=polyint(conv(ddb3,D2B(6,:)),x(3),x(4)); mni13=m131+m132;

m14=polyint (conv(ddb3,ddbnmil) ,x(3),x(4));

m221=polyint(conv(D2B(1,:),D2B(1,:)) ,x(1),x(2));
m222=polyint(conv(D2B(2,:),D2B(2,:)),x(2),x(3));
m223=polyint(conv(D2B(3,:),D2B(3,:)),x(3),x(4));
m224=polyint(conv(D2B(4,:),D2B(4,:)),x(4),x(5));
m22=m221+m222+m223+m224 ;

m231=polyint(conv(D2B(2,:),D2B(5,:)),x(2),x(3));
m232=polyint(conv(D2B(3,:),D2B(6,:)),x(3),x(4));
m233=polyint(conv(D2B(4,:),D2B(7,:)),x(4),x(5));
m23=m231+m232+m233;

m241=polyint(conv(D2B(3,:),ddbnmll),x(S),x(4));
m242=polyint(conv(D2B(4,:),ddbnm12),x(4),x(5)); m24=m241+m242;

m331=polyint(conv(D2B(5,:),D2B(5,:)),x(2),x(3));
m332=polyint(conv(D2B(6,:),D2B(6,:)),x(3),x(4));
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m333=polyint (conv(D2B(7,:),D2B(7,:)) ,x(4) ,x(5));
m334=polyint(conv(D2B(8,:),D2B(8,:)),x(5),x(6));
n33=m331+m332+m333+m334;

m341=polyint(conv(D2B(6,:),ddbnmi1) ,x(3),x(4));
m342=polyint (conv(D2B(7,:),ddbnm12) ,x(4),x(5));
m343=polyint(conv(D2B(8, :),ddbnm13) ,x(5),x(6));
m34=m341+m342+m343;

m441=polyint(conv(ddbnmi1,ddbnmil) ,x(3),x(4));
m442=polyint(conv(ddbnmi2,ddbnm12),x(4) ,x(5));
m443=polyint (conv(ddbnm13,ddbnmi3) ,x(5),x(6));
m44=m441+m442+m443;
M12=[m11 m12 m13 mi4;m12 m22 m23 n24; mi3 m23 m33 m34;m14 m24 m34 m44];

else
mill=polyint(conv(ddbl,ddbl) ,x(1),x(2));
mi112=polyint (conv(ddb2,ddb2),x(2),x(3));
m113=polyint(conv(ddb3,ddb3) ,x(3),x(4)); mil=m11i+m112+m113;

m121=polyint(conv(ddb1,D2B(1,:)),x(1),x(2));
m122=polyint(conv(ddb2,D2B(2,:)),x(2),x(3));
m123=polyint(conv(ddb3,D2B(3,:)),x(3),x(4)); mi2=m121+m122+m123;

m131=polyint(conv(ddb2,D2B(5,:)),x(2),x(3));
m132=polyint(conv(ddb3,D2B(6,:)),x(3),x(4)); mi3=m131+m132;

m14=polyint (conv(ddb3,D2B(9,:)),x(3),x(4));

m221=polyint(conv(D2B(1,:),D2B(1,:)),x(1),x(2));
m222=polyint(conv(D2B(2,:),D2B(2,:)),x(2),x(3));
m223=polyint(conv(D2B(3,:),D2B(3,:)),x(3),x(4));
m224=polyint(conv(D2B(4,:),D2B(4,:)),x(4),x(5));
m22=m221+m222+m223+m224;

m231=polyint(conv(D2B(2,:),D2B(5,:)),x(2),x(3));
m232=polyint (conv(D2B(3,:),D2B(6,:)),x(3),x(4));
m233=polyint (conv(D2B(4, :),D2B(7,:)) ,x(4),x(5));
m23=m231+m232+m233;

m241=polyint(conv(D2B(3,:),D2B(9,:)),x(3),x(4));
m242=polyint(conv(D2B(4,:),D2B(10,:)),x(4),x(5)); m24=m241+m242;
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if n==
m25=0; % Since D2B(13,:) does not exitst as defined above for n=6.
else
m25=polyint (conv(D2B(4,:),D2B(13,:)),x(4),x(5));
end
% Build M12 matrix:
wi=[m11 m22*ones(1,n-3) m11]; w2=[m1i2 m23*ones(1,n-4) mi12];
w3=[m13 m24*ones(1,n-5) m13]; wd=[m14 m25*ones(1i,n-6) mi4];
Mi21=sparse(diag(wl)+diag(w2,1)+diag(w3,2)+diag(w4,3)+diag(w2,-1));
M122=sparse(diag(w3,-2)+diag(w4,-3));
M12=M121+M122;
end
A12=EI*M12; J Compute A12
A22=cdI*M12; 7% Compute A22

end % End mat1222.m
sfe e sk ok sk ok s ok sk ok sk sk sk ok sk ok sk sk sk sk sk sk s s o sk ok sk sk sk sk 3k o sk s o e sk ok sk K 3k ok e ke e sk ok sk Kok sk sk ke ke o ok ki ok ke ok s o ok sk ok
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4.

e 2 ok 2k ok s ok ok ok ook ok sk sk ke sk sk sk ok sk Sk sk sk Sk Sk ok bk ok sk ok 3k ok ok o sk sk ok ok ok ok ok sk ok sk ok sk sk ok sk sk sk Sk sk e ok ok ok sk sk skosk ok sk sk okok

Function file matm22.m computes MY .

function [M22] = matm22(a,b,n,rhob)

% [M22]=matm22(a,b,n,rhob)
h
% The function produces the (n-1)x(n-1) M22 matrix whose elements
% are the integrals of rhob*(B(i)*B(j)) evaluated over the appro-
% priate partitions of [a,b] where i,j=1,2,...,n-1. B denotes
% cubic splines.
h
% Input: a & b = boundary of beam, [a,b];
s n = number of symmetric partitions of interval [a,b];
% rhob = uniform mass density of beam
% NOTE: n must be >= 4 for this function.
h
% Extrinsic functions called: myspline.m
h
% Written by Major J. M. Shehan, updated 8 April 95.
/. Begin matm22.m
% Determine step size and build x vector.

h=(b-a)/n; =x=a:h:b;
% Compute cubic basis splines for beam; B1=B(1) & Bnmi1=B(n-1).

[B,B1,Bnmi]=myspline(a,b,n); bi=B1(1,:); b2=B1(2,:); b3=B1(3,:);
% Determine if ’'n‘ is large enough and compute M22 matrix.
if n < 4

error(’n >= 4 required’)
elseif n==

mili=polyint(conv(bi,b1),x(1),x(2));
m112=polyint(conv(b2,b2),x(2),x(3));
m113=polyint(conv(b3,b3),x(3),x(4)); mil=m11i+m112+m113;

m121=polyint(conv(b1,B(13,:)),x(1),x(2));
m122=polyint(conv(b2,B(14,:)),x(2),x(3));
m123=polyint(conv(b3,B(15,:)),x(3),x(4)); mi12=m121+m122+m123;

m131=polyint(conv(b2,Bnmi(1,:)),x(2),x(3));
m132=polyint(conv(b3,Bnm1(2,:)),x(3),x(4)); mn13=m131+m132;
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m221=polyint(conv(B(13,:),B(13,:)),x(1),x(2));
m222=polyint(conv(B(14,:),B(14,:)),x(2),x(3));
m223=polyint(conv(B(15,:),B(15,:)),x(3),x(4));
m224=polyint(conv(B(16,:),B(16,:)),x(4),x(5));
m22=m221+m222+m223+m224 ;

M22=rhob*[m11 m12 m13; m12 m22 mi12; m13 m12 mi1]

elseif n==
mili=polyint(conv(bl,bl),x(1),x(2));
m112=polyint(conv(b2,b2),x(2),x(3));
m113=polyint(conv(b3,b3),x(3),x(4)); mil=m111+m112+m113;

m121=polyint(conv(b1,B(13,:)),x(1),x(2));
m122=polyint(conv(b2,B(14,:)),x(2),x(3));
m123=polyint(conv(b3,B(15,:)),x(3),x(4)); mi2=m121+m122+m123;

m131=polyint(conv(b2,B(17,:)),x(2),x(3));
m132=polyint(conv(b3,B(18,:)),x(3),x(4)); mi13=m131+m132;

mi4=polyint (conv(b3,Bnm1(1,:)),x(3),x(4));

m221=polyint(conv(B(13,:),B(13,:)),x(1),x(2));
m222=polyint(conv(B(14,:),B(14,:)),x(2),x(3));
m223=polyint(conv(B(15,:),B(15,:)),x(3),x(4));
m224=polyint(conv(B(16,:),B(16,:)),x(4),x(5));
m22=m221+m222+m223+m224 ;

m231=polyint(conv(B(14,:),B(17,:)),x(2),x(3));
m232=polyint(conv(B(15,:),B(18,:)),x(3),x(4));
m233=polyint(conv(B(16,:),B(19,:)),x(4),x(5));
m23=m231+m232+m233;

m241=polyint(conv(B(15,:),Bnm1(1,:)),x(3),x(4));
m242=polyint(conv(B(16,:) ,Bnm1(2,:)),x(4),x(5)); m24=m241+m242;
M22=rhob*[m11 m12 mi13 m14;mi2 m22 m23 m24;mi3 m23 m22 n12;m14 m24 mi12 mii];

else
mill=polyint(conv(bl,bl),x(1),x(2));
m112=polyint(conv(b2,b2),x(2),x(3));
m113=polyint(conv(b3,b3),x(3),x(4)); mil=m11i+m112+m113;
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m121=polyint(conv(b1,B(13,:)),x(1),x(2));
m122=polyint(conv(b2,B(14,:)),x(2),x(3));
m123=polyint(conv(b3,B(15,:)),x(3),x(4)); m12=m121+m122+m123;

m131=polyint(conv(b2,B(17,:)),x(2),x(3));
m132=polyint(conv(b3,B(18,:)),x(3),x(4)); mi13=m131+m132;

mi4=polyint (conv(b3,B(21,:)),x(3),x(4));

m221=polyint(conv(B(13,:),B(13,:)),x(1),x(2));
m222=polyint(conv(B(14,:),B(14,:)),x(2),x(3));
m223=polyint (conv(B(15,:),B(15,:)),x(3),x(4));
m224=polyint(conv(B(16,:),B(16,:)),x(4),x(5));
m22=m221+m222+m223+m224 ;

m231=polyint(conv(B(14,:),B(17,:)),x(2),x(3));
m232=polyint (conv(B(15,:),B(18,:)),x(3),x(4));
m233=polyint (conv(B(16,:),B(19,:)),x(4),x(5)); m23=m231+m232+m233;

m241=polyint(conv(B(15,:),B(21,:)),x(3),x(4));
m242=polyint(conv(B(16,:),B(22,:)),x(4),x(5)); m24=m241+m242;

m25=polyint (conv(B(16,:),B(25,:)),x(4),x(5));

% Build M22 matrix:
wi=[m11 m22*ones(1,n-3) m11]; w2=[m12 m23*ones(1,n-4) m12];
w3=[m13 m24*ones(1,n-5) m13]; w4=[m14 m25*ones(1,n-6) m14];
M221=diag(wl) + diag(w2,1) + diag(w3,2) + diag(w4,3);
M222=diag(w2,-1) + diag(w3,-2) + diag(w4,-3);
M22=M221+M222; M22=rhob*M22;
end

end % End matm22.m
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5.

Function file a8182.m computes AY and AL, .
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function [A31,A32]=a3132(a,b,n,mx,my,rhof)

%
/
%
%
/
.
/
%
%
%
%
/
/
b
/
%
/

h

%

%

%

/

[A31 A32] = a3132(a,b,n,mx,my,rhof)

Currently, this function returns matrices A31 and A32. The elements
of these matrices correspond to the integrated product of the
collapsed tensored Legendre poly’s (i.e., y=0) and the cubic poly’s
over [a,b]. Note: The cubic poly’s satisfy clamped beam boundary
conditions. A32 is formed by computing -A31’. Integration is
accomplished using Gaussian quadrature.

Input: [a,b] = interval of integration (i.e., length of beam)
n = number of symmetric partitions [a,b] is divided into
mx = highest degree of Legendre poly in basis set for beam
my = " " " " " " for cavity
rhof = density of fluid

Extrensic functions called: legtrans.m to compute Legendre poly’s

myspline.m to compute cubic splines
Written by Major J. M. Shehan, 13 May 95.

Begin a3132.m

Compute Gaussian quadrature weights and knots for partitioned beam.
h=b/n; v=0:h:b;

k=round ((4+mx)/2); % Determine no. of knots.
x=1:1:k-1; x=x./sqrt((2*x+1).*x(2%x-1)); j=diag(x,1)+diag(x,-1);
[u x]=eig(j); =x=diag(x); [x il=sort(x); u=u(:,i); w=u(l,:)."2;
w=w.*2; J ’w‘ denotes weights; ’x‘ denotes knots.
Translate knots to appropriate interval.
dx=h/2; u=1:2:2%n; x=x’;
for i=1:n
X(i,:)=dx*(x+u(i));
end
Compute Legendre & cubic poly’s.
[L]=legtrans(b,mx); [B,B1,Bnmi]=myspline(a,b,n);
Evaluate Legendre’s at translated knots corresp to beam partitions.
P(1:n,1:k)=ones(n,k); s=0;
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for i=2:mx+1
for j=1:n
P(j+n+s,:)=polyval(L(i,:),X(j,:));
end; s=s+n;
end
% Compute integrals involving B(1) and B(n-1) cubic splines.
M=zeros(n-1,mx+1); 7% Allocate storage space.
ql=w.*polyval (B1(1,:),X(1,:)); q2=w.*polyval(B1(2,:),X(2,:));
q3=w.*polyval (B1(3,:),X(3,:));
ri=w.*polyval (Bnmi(1,:),X(n-2,:));
r2=w.*polyval (Bom1(2,:),X(n-1,:));
r3=w.*polyval (Bnm1(3,:),X(n,:));
s=0;
for i=1:mx+1
vi=sum(ql.*P(i+s,:)); v2=sum(q2.*P(2+s,:));
v3=sum(q3.*P(3+s,:));
ul=sum(ri.*P(n-2+s,:)); u2=sum(r2.*P(n-1+s,:));
u3=sum(r3.*P(n+s,:));
M(1,i)=dx*(vi+v2+v3); M(n-1,i)=dx*(ul+u2+u3); s=s+n;
end
% Compute interior integrals (B(i),P(j)) for i=2,...,n-2 & for j=1:mx+1.
[uu vv]=size(B);
s=0; r=0;
si=w.*polyval(B(13,:),X(1,:)); s2=w.*polyval(B(14,:),X(2,:));
s3=w.*polyval (B(15,:),X(3,:)); s4=w.*polyval(B(16,:),X(4,:));
for i=1:(uu-24)/4
for j=1:mx+1
ti=sum(s1.#P(1+s+r,:)); t2=sum(s2.*P(2+s+r,:));
t3=sum(s3.*P(3+s+r,:)); t4=sum(s4.*P(4+s+r,:));
M(i+1,j)=dx*(t1+t2+t3+t4); s=s+n;
end; s=0; r=1+r;
end; " M=M’;
4 Generate A31 & A32 using M and fact that P(y=0)=(-1) or (1) for all
Jcollapsed Legendre poly’s.
n=(mx+1)*(my+1)-1; A31=zeros(m+1,n-1); s=0;
for i=1:(my+1) _
A31(1+s:mx+1+s,:)=(-1) " (i+1)*M; s=s+mx+1;
end
A31=-rhof*A31(2:m+1,:); A32=-A31";

end % End a3132.m
st stk ook sk sk sk ok ok ok oK sk sk sk e e o e e s ok e ok o ok sk ok ke ok ok sk skok sk kol sk ook sk sk sk sk sk sk sk sk skok sk sk sk sk ook ok s o sk ok ok sk Kok ok
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6.

Function file mataf1.m computes AL .
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function [A41]=mata41(b,el,mx,my,rhof)

/
/
b
[/
%
/
pA
%
%
%
%
/
%

[A41]=matadl(b,el,mx,my,rhof)

Computes matrix A41 for Model II.
Input variables: b = right bdary of [0,b].
el = upper bdary of [0,el],
mx = highest degree of Legendre poly for beam,
my = highest degree of Legendre poly for cavity,
cc = proportionality constant of damping term.
In this program, matrix A41A corresponds to integration over
0<=y<=el, x=0; A41B corresponds to integration over 0<=x<=b, y=el;
and A41C corresponds to integration over 0O<=y<=el, x=b.

Written by Major J. M. Shehan; last update: 23 May 95.

nxl=mx+1; myl=my+1; m=mxi*myl-1; mi=m+1; % Notation simplification.

%4k This algorithm can be used to computes A41C.

b
h
h
%
h

y=ones(1,myl); v=1:2:2+myl; intPP=el*(y./v); T=ones(mxl,myl);
A41C=zeros(ml,m1); g=0; g=0;
for i=1:myl

A41C(1+qg:mx1+q,1+g:myl+g)=intPP(i)*T; q=mxl+q; g=myl+g;
end; A41C=2%A41C(2:m1,2:m1);

%%% This algorithm computes A41A & A41C simultaneously.
y=ones(1,myl); vy=1:2:2*myl; intPPy=el*2*(y./vy); A41AC=zeros(ml,ml);

s=0; qgq=mx1l; g=myl;
for i=1:mx1

for j=1:myl

Block(i,j)=1+(-1)"(j+1+s);

end; s=s+1;
end
for i1=2:myl

A41AC(1+q:mx1+q,1+g:myl+g)=intPPy(i)*Block; g=mxl+q; g=myl+g;

end; A41AC=A41AC(2:m1,2:m1);

A41AC(1:mx,1:my)=intPPy(1)*Block(1:mx,2:myl);
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%%4% This alogrithm computes A41B.
x=ones(1,mx1); vx=1:2:2*mx1; intPPx=b*(x./vx); ti=intPPx(1);
t2=intPPx(mx1); intPPx(1)=t2; intPPx(mx1)=t1; D=diag(intPPx);
A41B=zeros(mi,m1); g=0;
for i=1:myl
A(1:mx1,1+g:mx1+g)=D; g=g+mx1;
end
for k=1:my
A41B(k* (mx1)+1: (k+1)*(mx1),:)=A;
end; A41B(1:mx1,:)=A; A41B=A41B(1:m,1:m);

%% Compute A41
A41=-rhof*(sparse(A41AC)+sparse(A41B));

end % End mata4l.m
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7. Function file myspline.m computes the cubic splines.
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function [B,B1,Bnm1] = myspline(a,b,n)

% [B,B1,Bnml] = myspline(a,b,n)

A

% This function returns a family of standard cubic splines

% defined over [a,b], as well as the "boundary splines" which
% satisfy clamped boundary conditions. The interval [a,b] is
% divided into ’'n‘ uniform partitions; ’'h’ is the step size.
%

% Input: [a,b] = interval along x-axis;
p g

/A n = no. of equispaced partitions of [a,b].

% Output: B = each row of "matrix" B corresponds to a cubic poly
% which is defined only over one step size (b-a)/n;
% every 4 rows constitute a piecewise smooth cubic

% polynomial which is non-zero only over 4 intervals
% (e.g., rows 1-4 is the first cubic poly, rows 5-8
% makes up the second basis function, etc.).

% Bl = left most cubic spline satisfying clamped boundary
% conditions.

h Bnml = right most cubic spline satisfying clamped boundary
% conditions.

% Written by Major J. M. Shehan, updated 10 April 95.
% Begin myspline.m

% Form standard cubic splines.

h=(b-a)/n; x=a-3*h:h:b+3%h; hh=1/h"3; z=0;

for 1 = 1:n+3

B(i+z,:)=hh*[1 -3*x(i) 3*x(i)"2 -x(i)"3];

B(i+1+z,:)=hh*[-3 3*h+9*x(i+1) 3*h~2-6*h*x(i+1)-9*x(i+1)"2
h~3-3*h~2*x(i+1)+3*h*x (i+1) ~2+3*x(i+1)"3];

B(i+2+z, :)=hh*[3 3%h-9*x(i+3) 9*x(i+3) " 2-6*h*x(i+3)-3*h"2
h~3+3%h~2%x (1+3) +3*h*x (i+3) "2-3*x(i+3) ~3] ;

B(i+3+z,:)=hh*[-1 3*x(i+4) -3*x(i+4)"2 x(i+4)"3];

z=z+3;

end
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% Form exterior splines which satisfy clamped boundary conditions.
% Form B1=B(0)-2xB(1)-2*B(-1).
b1=B(7,:)-2*B(10,:)-2%B(4,:);
b3=-2%B(12,:);
Bi=[b1; b2; b3];
% Form Bnmi = B(n) - 2#B(n+1) - 2*B(n-1).

[uu vv]l=size(B);
bnm11=-2*%B(uu-11,:); bnm12=B(uu-7,:)-2*B(uu-10,:);

bnm13=B(uu-6,:)-2+%B(uu-9, :)-2*B(uu-3, :);
Bnmi=[bnmil; bnm12; bnmi3];

end % End myspline.m
stk sk sk ok sk ko sk ok oK ok K ok Aok s K Kok ko ks ks s sk ok sk ok ok ok ok ok ook K sk ok o oK Ko o

b2=B(8,:)-2*%B(11,:);
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8. Function file legtrans.m computes the transformed Legendre polynomials.

>k 3k 3k %k 3k ok 3k 3k 3k 3k ok ok ok ok o ok 3 e ke ok sk ok 3k sk ok sk ok ok ok ok 3k 5k 3 ok ok ok sk ok 3k sk ok ok sk ok 5k ok 3K 3k %k %k ok sk %k %k ok koK ok kK %k sk ok ok ok ok %k k koK

function [L] = legtrans(b,n)

% [L] = legtrans(b,n)

%

% This function produces a ’matrix‘ L whose rows are translated

% Legendre polynomials of Oth through nth degree defined on [0,1].
% The Oth degree polynomial corresponds to the first row of the
% output matrix, while the nth degree polynomial corresponds to the
% n+l row (i.e., the last row) of the output matrix.

h

% Input arguments: n = highest degree of translated Legender poly
% desired;

% b = right end point of interval assuming [0,b].

h

% Algorithm written by Major J. M. Shehan, updated 11 April 95.

% Begin legtrans.m

% Generate tranlated Legendre poly’s of Oth & 1st degree.
L(1,:)=[zeros(1,n) 1]; L(2,:)=[zeros(1,n-1) 2/b -1];

% Generate 2d-nth deg translated Legendre poly’s recursively.

k=0; r=n+1;

for i=2:n
d=i+1; p=[(2*(i-1)+1)*2/b (2*(i-1)+1)*(-1)];
L(d,:)=(1/i)*([zeros(1,n-1) conv(p,L(i,n-k:r))] - [(i-1)*L(i-1,:)]1);
k=k+1;

end

end % End legtrans.m
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9. Function file polyint.m performs polynomial integration.
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function [polyint] = polyint(p,a,b)

A
h
A
h
%

%

This function integrates the polynomial ’'p’ over the interval [a,b].
The polynomial ’p’ is written as a vector ’v’ with coefficients listed
in descending order (e.g., 3x"2 + 5x - 8 ===> [3 5 8]).

Written by Major J. M. Shehan 10 Feb 95.

Begin polyint.m

v=[p 0]; y=v./[length(p):-1:1 1]; polyint = polyval(y,b) - polyval(y,a);

end % End polyint.m
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